

Moving Picture, Audio and Data Coding

by Artificial Intelligence

www.mpai.community

MPAI Technical Specification

Multimodal Conversation

MPAI-MMC

WD 0.4

WARNING

Use of the technologies described in this Technical Specification may infringe patents, copyrights

or intellectual property rights of MPAI Members or non-members.

MPAI or any of its Members accept no responsibility whatsoever for damages or liability, direct

or consequential, which may result from use of this Technical Specification.

Readers are invited to review Annex 1 – Notices and Disclaimers.

© Copyright MPAI 2021. All rights reserved

Multimodal Conversation

1 Introduction ... 4

2 Scope of Standard .. 6

2.1 Conversation with Emotion (CWE) ... 6

2.2 Multimodal Question Answering (MQA) .. 6

2.3 Unidirectional Speech Translation (UST) ... 6

2.4 Bidirectional Speech Translation (BST) .. 7

2.5 One-to-Many speech translation (OMT) ... 7

2.6 Normative content of the Use Cases .. 7

3 Terms and Definitions ... 8

4 Normative References ... 8

5 Use Case Architectures ... 8

5.1 Conversation with Emotion (CWE) ... 8

5.1.1 Scope of Use Case ... 8

5.1.2 Input/Output Data .. 9

5.1.3 Implementation Architecture ... 9

5.1.4 AI Modules .. 9

5.1.5 AIW Metadata ... 10

5.2 Multimodal Question Answering (MQA) .. 10

5.2.1 Scope of standard .. 10

5.2.2 Input/output data ... 10

5.2.3 Implementation Architecture ... 10

5.2.4 AI Modules .. 11

5.2.5 AIW Metadata ... 11

5.3 Unidirectional Speech Translation (UST) ... 11

5.3.1 Scope of Use Case ... 11

5.3.2 Input/output data ... 11

5.3.3 Implementation Architecture ... 12

5.3.4 AI Modules .. 12

5.3.5 AIW Metadata ... 12

5.4 Bidirectional Speech Translation (BST) .. 12

5.4.1 Scope of Use Case ... 12

5.4.2 Input/output data ... 13

5.4.3 Implementation Architecture ... 13

5.4.4 AI Modules .. 13

5.4.5 AIW Metadata ... 14

5.5 One-to-Many speech translation (OMT) ... 14

5.5.1 Scope of Use Case ... 14

5.5.2 Input/output data ... 14

5.5.3 Implementation Architecture ... 14

5.5.4 AI Modules .. 15

5.5.5 AIW Metadata ... 15

6 AI Modules .. 15

6.1 MPAI-MMC AIMs and their data ... 15

6.1.1 Conversation with Emotion (CWE) .. 15

6.1.2 Multimodal Question Answering (MQA) ... 16

6.1.3 Unidirectional Speech Translation (UST) ... 16

6.1.4 Bidirectional Speech Translation (BST) ... 16

6.1.5 One-to-many Speech Translation (OMT) ... 17

6.2 Data Formats .. 17

6.2.1 Text .. 18

6.2.2 Speech ... 18

6.2.3 Video ... 18

6.2.4 Emotion ... 18

6.2.5 Text with Emotion ... 23

6.2.6 Video of faces KB Query Format ... 24

6.2.7 Object identifier ... 24

6.2.8 Meaning ... 24

6.2.9 Intention .. 24

6.2.10 Language identifier .. 27

6.2.11 Speech features .. 27

Annex 1 – MPAI-wide terms and definitions (Normative) ... 30

Annex 2 - Notices and Disclaimers Concerning MPAI Standards (Informative) 32

Annex 3 – The Governance of the MPAI Ecosystem (Informative) ... 34

1 Level 1 of MPAI standardisation .. 34

2 Level 2 of MPAI standardisation .. 34

3 Level 3 of MPAI standardisation .. 35

4 The MPAI ecosystem .. 36

Annex 4 – AIW and AIM Metadata of MMC-CWE .. 37

1 ID linearization .. 37

2 AIW metadata for CWE .. 37

3 AIM metadata .. 41

3.1 SpeechRecognition .. 41

3.2 Video Analysis ... 42

3.3 Language Understanding ... 43

3.4 Emotion Recognition ... 44

3.5 Dialog Processing .. 45

3.6 Speech Synthesis .. 46

3.7 Lip Animation .. 47

Annex 5 – AIW and AIM Metadata of MMC-MQA .. 49

1 ID linearization .. 49

2 AIW metadata for MQA ... 49

3 AIM metadata .. 52

3.1 SpeechRecognition .. 52

3.2 Video Analysis ... 53

3.3 Language Understanding ... 54

3.4 Question Analysis .. 55

3.5 Question Answering ... 56

3.6 Speech Synthesis (Text) ... 57

Annex 6 – AIW and AIM Metadata of MMC-UST .. 59

1 ID linearization .. 59

2 AIW metadata for UST ... 59

3 AIM metadata .. 61

3.1 SpeechRecognition .. 61

3.2 Translation ... 62

3.3 Speech Feature Extraction ... 63

3.4 Speech Synthesis .. 64

Annex 7 – AIW and AIM Metadata of MMC-BST .. 66

Annex 8 – AIW and AIM Metadata of MMC-OMT .. 76

1 Introduction

Moving Picture, Audio and Data Coding by Artificial Intelligence (MPAI) is an international

Standards Developing Organisation with the mission to develop AI-enabled data coding standards.

Research has shown that data coding with AI-based technologies is generally more efficient than

with existing technologies. Compression and feature-based description are notable examples of

coding.

Conversation with Emotion (MPAI-MMC) is an MPAI Standard, comprising 5 Use Cases:

“Conversation with Emotion”, supporting audio-visual conversation with a machine impersonated

by a synthetic voice and an animated face; “Multimodal Question Answering” supporting request

for information about a displayed object; “Unidirectional Speech Translation”, “Bidirectional

Speech Translation” and “One-to-Many Speech Translation” supporting conversational translation

application based on synthetic speech that preserves the speech features of the human.

The current version of MPAI-MMC has been developed by the MPAI Multimodal Conversation

Development Committee (MMCC-DC). Future versions of the standard may extend the scope of

the Use Cases and/or add new Use Cases in the scope of Multimodal Conversation.

In the following Terms beginning with a capital letter are defined in Table 1if they are specific to

this MPAI-CUI Standard and to Table 13Table 13 if they are common to all MPAI Standards.

The AI Framework (AIF) execution environment (MPA-AIF) [2] depicted in Figure 1 enables

Interoperable AI applications and services. Further details of the AIF Reference Model can be

found in Annex 3.

Figure 1 – The Components of the AI Framework (AIF)

The MPAI-MMC Application Standard normatively specifies 5 AI Frameworks (AIW) supporting

the 5 MPAI-MMC identified Use Cases. The MPAI-MMC Use Case no. 3 “Unidirectional Speech

Translation” interprets a Speech Segment uttered in a specified language to another specified

languages preserving the characteristics of the original speech. Figure 2 depicts an AIW

standardised by MPAI-MMC, called “Unidirectional Speech Translation”.

http://mpai.community/
http://mpai.community/

Figure 2 – An AIM example

MPAI-MMC normatively specifies the following aspects of an AIW:

1. The semantics and the format of the input data, e.g., “Requested Languages”, “Source Text”

and “Source Speech”.

2. The function, e.g., “interpreting a Speech Segment or a Source Text from a language to another

preserving the characteristics of the original Speech Segment”.

3. The format of the output data, e.g., “Speech Segment” and “Text”.

An AIW is composed of data processing elements – called AI Modules (AIM). Error! Reference

source not found. and Figure 4 depict two examples of the same AIM with the same function.

Error! Reference source not found. includes the necessary knowledge (e.g., a neural network)

and Figure 4 accesses that knowledge from an external knowledge base.

Figure 3 – An AIM with embedded

knowledge

Figure 4 – An AIM with access to an

external knowledge base

MPAI-MMC normatively specifies the following aspects of an AIM:

1. The format and semantics of the input data, e.g., “Text and Speech Features”.

2. The function, e.g., “Produce a synthetic speech from text and Emotion Descriptors”.

3. The format of the output data, e.g., “Speech Segment”.

An AIM is defined by its function and interfaces, but not by its internal architecture, which may

be based on AI (e.g., Error! Reference source not found.) or data processing (e.g., Figure 4),

and implemented in software, hardware or hybrid software and hardware technologies.

MPAI normatively specifies the process, the tools and the data or the characteristics of the data to

be used to Assess the Grade of Performance of an AIM or a AIW.

MPAI offers implementers 3 different Levels of compliance to MPAI Standards:

Level 1 An AIF Implementation running an AIW composed of AIMs performing any propri-

etary function and exposing any proprietary interface but exposing the interfaces requ-

ired to be executed in the AIF.

Level 2 An AIF Implementation running an AIW composed of AIMs whose functions and

interfaces are specified by an MPAI Application Standard.

Level 3 An Implementation running an AIW composed of AIMs certified to possess the

attributes of Reliability, Robustness, Replicability and Fairness – collectively called

Performance.

The MPAI ecosystem offers users access to the promised benefits of AI with a guarantee of

increased transparency, trust and reliability as the Interoperability Level moves from 1 to 3. More

informative details are provided by Annex 3.

2 Scope of Standard

The Multimodal Conversation Technical Specification (MPAI-MMC) includes 5 Use Cases

sharing the characteristic of using AI to enable a form of human-machine conversation that emul-

ates human-human conversation in completeness and intensity. They are: Conversation with

Emotion (CWE), Multimodal Question Answering (MQA), Unidirectional Speech Translation

(UST), Bidirectional Speech Translation (BST) and One-to-many Speech Translation (OMT).

MPAI expects to produce future MPAI-MMC versions supporting enhanced current and new Use

Cases.

This version of MPAI-MMC has been developed by the MMC-DC Development Committee

2.1 Conversation with Emotion (CWE)

When people talk, they use multiple modalities. Emotion is one of the key features to understand

the meaning of the utterances made by the speaker. Therefore, a conversation system with the

capability to recognize emotion can better understand the user and produce a better reply.

The Conversation with Emotion (MMC-CWE) Use Case handles conversation with emotion. It is

a human-machine conversation system where the computer can recognize emotion in the user’s

speech and/or text, also using the video information of the face of the human to produce a reply

coherent with the emotional state of the human.

2.2 Multimodal Question Answering (MQA)

Question Answering (QA) Systems answer a user’s question presented in natural language.

Current QA systems only deal with the case where input is in “text” form or “speech” form.

However, there are cases where mixed inputs such as speech with an image are presented to the

system. For example, a user asks a question: “Where can I buy this tool?” showing the picture of

the tool. In Multimodal Question Answering (MMC-MQA) a machine responds to a question

expressed in a text or in speech by a user showing an object using text and synthetic speech as

output.

2.3 Unidirectional Speech Translation (UST)

In the Unidirectional Speech Translation (MMC-UST) Use Case, the system recognizes a voice

uttered in a language by a speaker, converts the recognized voice into another language through

automatic translation, and outputs a converted voice as text-type subtitles or as a synthesized voice

preserving the speaker’s features in the translated speech.

2.4 Bidirectional Speech Translation (BST)

In Bidirectional (as opposed to Unidirectional) Speech-to-Speech Translation (MMC-BST), two

people converse, each speaking a different language. They may be in the same location, or they

may be communicating remotely. The AIMs implementing the components may be implemented

as online services, or they may be embedded on a single device. The flow of control (from speech

recognition to text translation to speech synthesis) is identical to that of the Unidirectional case.

The difference is that, rather than one such flow, two flows are provided – the first from language

A to language B, and the second from B to A.

2.5 One-to-Many speech translation (OMT)

In One-to-Many (as opposed to Unidirectional or Bidirectional) Speech-to-Speech Translation

(MMC-OMT), one person speaking his or her preferred language broadcasts to two or more audi-

ence members, each listening, and responding, in a different language. The speaker and audience

may be in the same location, or the communication may be carried out remotely. The AIMs

implementing the components may be implemented as online services, or they may be embedded

on a single device. The flow of control (from speech recognition to text translation to speech

synthesis) is identical to that of the Unidirectional case. However, rather than one such flow,

multiple paired flows are provided – the first pair from language A to language B and B to A; the

second from A to C and C to A; and so on.

2.6 Normative content of the Use Cases

Each Use Case normatively defines:

1. AIW: a structured aggregation of AIMs that implements the Use Case characterised by:

a. The function performed by the AIW.

b. The input and output data of the AIW.

c. The topology and connections of the AIMs in the AIW.

2. AI Modules: processing elements that are characterised by:

a. The function performed by the AIM.

b. The input and output data of the AIM.

3. Data formats: any type of static (time independent) or dynamic (time dependent) data that is

used as input and output of a AIW or an AIM.

The word normatively is to be interpreted to mean that if an implementer claims conformance to

1. a AIW, the implementation shall:

a. Perform the AIW function specified in Chapter 5.

b. All AIMs, their topology and connections should conform to the AIW Architecture

specified in Chapter 5.

c. The AIW and AIM input and output data should have the formats specified in

Chapter 5.

2. an AIM, the implementation shall:

a. Perform the AIM function specified by the appropriate section of Chapter 5.

b. Receive as input and produce as output data in the formats specified in Chapter 5.

3. a data format, the data shall have the format specified in Section 0.

Users of this Technical Specification should note that:

1. This Technical Specification defines the possible levels of conformance but does not mandate

any.

2. Implementers decide the level of conformance their implementation satisfies.

3. Implementers can use the Reference Software of this Technical Specification to develop their

implementations.

4. The Conformance Testing specification can be used to test the conformity of an implemen-

tation to this Technical Specification.

5. Performance Assessors can assess the level of Performance of an implementation based on the

Performance Assessment specification.

The Governance of the MPAI Ecosystem, outlined in Annex 2.

3 Terms and Definitions

The terms used in this standard whose first letter is capital have the meaning defined in Table 1.

Table 1 – Table of terms and definitions

Term Definition

Emotion An attribute that indicates an emotion out of a finite set of Emotions

Emotion Grade The intensity of an Emotion

Emotion Recognition An AIM that decides the final Emotion out of Emotions from different

sources

Image analysis An AIM that extracts features from video

Intention Intention is the result of a question analysis that denotes information

on the input question

Language

Understanding

An AIM that analyses natural language as Text to produce its meaning

and emotion included in the text

Meaning Information extracted from the input text such as syntactic and

semantic information

Question Analysis An AIM that analyses the meaning of a question sentence and

determines its Intention

Question Answering An AIM that analyses the user’s question and produces a reply based

on the user’s Intention

Speech Recognition An AIM that converts speech to Text

Speech Synthesis An AIM that converts Text or concept to speech

Text A collection of characters drawn from a finite alphabet

Translation An AIM that converts Text in a source language to Text in a target

language

4 Normative References

This standard normatively references the following documents, both from MPAI and other stan-

dard organisations:

1. The governance of the MPAI ecosystem, N309

2. AI Framework Technical Specification, N293

3. ISO 639 – Codes for the Representation of Names of Languages — Part 1: Alpha-2 Code.

4. ISO/IEC 10646, Information technology – Universal Coded Character Set

5. …

5 Use Case Architectures

5.1 Conversation with Emotion (CWE)

5.1.1 Scope of Use Case

In the Conversation with Emotion (CWE) use case, a machine responds to a textual and/or vocal

utterance made by a human in a way that is congruent with the human’s utterance and emotional

state as detected from the human’s text and/or speech and face. The machine responds using text,

synthetic speech and a face whose lips are animated by the synthetic speech.

5.1.2 Input/Output Data

The input and output data of this Use Case are:

Input Comments

Text Text typed by the human as additional information stream or as a replacement of the

speech.

Speech Speech of the human having a conversation with the machine.

Video Video of the face of the human having a conversation with the machine.

Output Comments

Text Text of the speech produced by the machine.

Speech Synthetic speech produced by the machine.

Video Video of a face whose lips are animated by the speech produced by the machine.

5.1.3 Implementation Architecture

The operation of Conversation with Emotion develops in the following way:

1. Emotion is recognised in the following way and reflected in the speech production side.

a. A set of emotion related cues are extracted from text, voice and video.

b. Each text, speech and video recognition module recognises emotion independently.

c. The Emotion recognition module fuses all emotions into the final emotion.

d. The final emotion is transferred to the Dialog processing module.

2. The Dialog Processing module produces a reply based on the final emotion and meaning from

the text and video analysis.

3. The Speech Synthesis (Emotion) module produces the speech from the reply in text with

embedded emotion

4. The Face animation AIM produces the animated lips of a face consistently with the synthesised

Speech drawing information from the Video of Faces Knowledge Base.

Figure 5 depicts the input/output data, the AIMs and the data exchanged between AIMs.

Figure 5 – Architecture of Conversation with Emotion

5.1.4 AI Modules

The AI Modules of Conversation with Emotion perform the functions described in Table 2.

Table 2 – AI Modules of Conversation with Emotion

AIM Function

Language

understanding

Analyses natural language in a text format to produce its meaning and

emotion included in the text.

Speech Recognition Analyses the voice input and generates text output and emotion carried

by it.

Video analysis Analyses the video and recognises the emotion it carries.

Emotion recognition Determines the final emotion from multi-source emotions.

Dialog processing Analyses user’s Meaning and produces Reply based on the meaning

and emotion implied by the user’s text.

Speech synthesis Produces speech from Reply (the input text).

Lips animation Produces a video of a face whose lips are animated consistently with

the synthesised Speech.

5.1.5 AIW Metadata

Specified in Annex 4 Section 2.

5.2 Multimodal Question Answering (MQA)

5.2.1 Scope of standard

A human asks a question in natural language expressed as text and/or speech while showing an

object the question refers to. The machine responds to the question in text and synthetic speech.

5.2.2 Input/output data

Input Comments

Text Text typed by the human as additional information stream or as a replacement of the

speech.

Speech Speech of the human asking a question to the machine.

Video Video of the human showing an object in their hands.

Output Comments

Text Text of the speech produced by the machine.

Speech Synthetic speech produced by the machine.

5.2.3 Implementation Architecture

The operation of Multimodal Question Answering develops in the following way:

1. A question is asked in the form of text or voice.

2. The meaning of the question is recognised.

3. Video analysis identifies the object and sends it to Language Understanding.

4. Language Understanding fuses the multimodal inputs and generates the integrated meaning.

5. Intention Analysis determines the Intention of the question and sends it to QA.

6. Question Answering uses the intention of the question and the Meaning to produce the answer.

7. Speech Synthesis (Text) produces the speech from the answer in text.

Figure 6 depicts the input/output data, the AIMs and the data exchanged between AIMs.

 Figure 6 – Architecture of Multimodal Question Answering

5.2.4 AI Modules

The AI Modules of Multimodal Question Answering are given in Table 3.

Table 3 – AI Modules of Multimodal Question Answering

AIM Function

Language understan-

ding

Analyses natural language expressed as text to produce the meaning

of the text.

Speech Recognition Analyses the speech input and generates text output.

Speech synthesis Converts input text to speech.

Video analysis Analyses video and produces the name of object in focus.

Question analysis Analyses the Meaning of the sentence and determines the Intention .

Question Answering Analyses user’s question and produces a Reply.

5.2.5 AIW Metadata

Specified in Annex 5 Section 2.

5.3 Unidirectional Speech Translation (UST)

5.3.1 Scope of Use Case

In Unidirectional Speech Translation, spoken segments in Language A are translated into spoken

segments in Language B.. The AIMs implementing the components may be implemented as online

services, or they may be embedded on a single device. The flow of control is from speech

recognition to text translation and then, to speech synthesis.

5.3.2 Input/output data

Input Comments

Desired

languages

User-specified input and output languages

Speech Speech produced by a human desiring spoken translation in the specified language.

Text Alternative textual source information to be translated to the specified language.

Output Comments

Speech Translated speech.

Text Text of the translated speech.

5.3.3 Implementation Architecture

Figure 7 describes the input/output data, the AIMs and the data exchanged between AIMs.

Figure 7 – Architecture of Unidirectional Speech Translation

5.3.4 AI Modules

The AI Modules of Unidirectional Speech Translation are given in Table 4.

Table 4 – AI Modules of Unidirectional Speech Translation

AIM Function

Speech

Recognition

Converts Speech into Text.

Translation Translates the user text input in source language to the target language.

Speech feature

extraction

Extracts Speech features such as tones, intonation, intensity, pitch,

emotion, intensity or speed from the input voice specific of the speaker.

Speech Synthesis

(Features)

Produces Speech from the text resulting from translation with the speech

features extracted from the speaker of the source language

5.3.5 AIW Metadata

Specified in Annex 6 Section 2.

5.4 Bidirectional Speech Translation (BST)

5.4.1 Scope of Use Case

In Bidirectional (as opposed to Unidirectional) Speech Translation, two people converse, each

speaking a different language. They may be in the same location, or they may be communicating

remotely. The AIMs implementing the components may be implemented as online services, or

they may be embedded on a single device. The flow of control (from speech recognition to text

translation to speech synthesis) is identical to that of the Unidirectional case. The difference is

that, rather than one such flow, two flows are provided – the first from language A to language B,

and the second from B to A.

5.4.2 Input/output data

Input Comments

Desired

languages

User-specified input and output languages

Speech1 Speech produced by human1 desiring spoken translation in the specified language.

Text1 Alternative textual source information1 to be translated to the specified language.

Speech2 Speech produced by human2 desiring spoken translation in the specified language.

Text2 Alternative textual source information2 to be translated to the specified language.

Output Comments

Speech1 Translated speech of Speaker 1.

Text1 Text of the translated speech by Speaker 1.

Speech2 Translated speech of Speaker 2.

Text2 Text of the translated speech by Speaker 2.

5.4.3 Implementation Architecture

Figure 8 depicts the AIMs and the data exchanged between AIMs.

Figure 8 – Architecture of Bidirectional Speech Translation

5.4.4 AI Modules

The AI Modules are given in Table 5.

Table 5 – AI Modules of Bidirectional Speech Translation

AIM Function

Speech Recognition Converts 2 independent Speech inputs into 2 independent Text outputs.

Translation Translates 2 independent Text inputs in two independent Text outputs.

Speech feature

extraction

Extracts 2 independent Speech features from the 2 input Speeches.

Speech Synthesis

(Features)

Produces 2 Speeches from the texts resulting from translation with the

speech features extracted from the corresponding speaker.

5.4.5 AIW Metadata

Specified in Annex 7 Section 2.

5.5 One-to-Many speech translation (OMT)

5.5.1 Scope of Use Case

In One-to-Many (as opposed to Unidirectional or Bidirectional) Speech Translation, one person

speaking his or her preferred language broadcasts to two or more audience members, each lis-

tening, and potentially responding, in a different language. The speaker and audience may be in

the same location, or the communication may be carried out remotely. The AIMs implementing

the components may be implemented as online services, or they may be embedded on a single

device. The flow of control (from speech recognition to text translation to speech synthesis) is

identical to that of the Unidirectional case. However, rather than one such flow, multiple paired

flows are provided – the first pair from language A to language B and B to A; the second from A

to C and C to A; and so on.

5.5.2 Input/output data

Input Comments

Desired

languages

User-specified input and output languages

Speech Speech produced by human desiring spoken and text translation in a specified set

of languages.

Text Alternative textual source information to be translated to the specified set of

languages.

Output Comments

Speech Translated speech speech segments.

Text1 Text of the translated speech segments.

5.5.3 Implementation Architecture

Figure 9 depicts the AIMs and the data exchanged between AIMs.

Figure 9 – Architecture of One-to-Many Speech Translation (OMT)

5.5.4 AI Modules

The AI Modules of Personalized Automatic Speech Translation are given in Table 6.

Table 6 – AI Modules of One-to-Many Speech Translation

AIM Function

Speech

Recognition

Converts 1 Speech input into a set of Text outputs of the specified lan-

guages

Translation Translates 1 Text input into a set of Text of the Requested Languages

Speech feature

extraction

Extracts Speech Features from the input voice specific of the speaker.

Speech Synthesis

(Features)

Uses the set of Text resulting from translation and the Speech Features

extracted from the speaker of the Source Language to produce a set of

Speech Segments in the specified languages.

5.5.5 AIW Metadata

Specified in Annex 8 Section 2.

6 AI Modules

This Chapter specifies the AIMs and their input and output data employed by all Use Cases spec-

ified in this Standard.

Section 6.1 lists the AIMs and their data in tabular form and using the AIM Metadata specified by

the AI Framework (MPAI-AIF) Standard.

Section 0 specifies the formats of the input and output data used in this Standard.

The reader is alerted that some data formats in this Standard are shared with the Context-based

Audio Enhancement (MPAI-CAE) Standard. The specification of such data formats is repeated

verbatim in both standards. MPAI plans on creating a future specification that will contain all data

formats that are shared by more than one MPAI Standard.

6.1 MPAI-MMC AIMs and their data

6.1.1 Conversation with Emotion (CWE)

The AIMs and the data formats used by the Conversation with Emotion Use Case are given by

Table 7.

Table 7 – Conversation with Emotion AIMs and data formats

AIM Input Data Output Data

Video analysis Video Emotion

Meaning

Speech recognition Input Speech Text

Emotion

Language understanding Input Text

Recognised Text

Text

Emotion

Meaning

Emotion recognition Emotion (from text)

Emotion (from speech)

Emotion (from image)

Final Emotion

Dialog processing Text Text with Emotion

Meaning (text/speech)

Final Emotion

Meaning (video)

Text

Speech Synthesis (Emotion) Text with Final Emotion Speech

Lips animation Synthesized Speech

Final Emotion

Response of Face video KB

Video

Query Face video KB

The AIM Metadata are given in Annex 4 Section 3.

6.1.2 Multimodal Question Answering (MQA)

The AIMs and the data formats used by the Multimodal Question Answering Use Case are given

by Table 8.

Table 8 – Multimodal Question Answering AIMs and data formats

AIM Input Data Output Data

Speech Recognition Speech Text

Image analysis Image Text

Language understanding Text

Text

Meaning

Meaning

Question analysis Meaning Intention

Question Answering Text

Meaning

Intention

Text

Speech Synthesis (Text) Text Speech

The AIM Metadata are given in Annex 5 Section 3.

6.1.3 Unidirectional Speech Translation (UST)

The AIMs and the data formats used by the Unidirectional Speech Translation Use Case are given

by Table 9.

Table 9 – Unidirectional Speech Translation AIMs and data formats

AIM Input Data Output Data

Speech Recognition Speech Text

Translation Text

Requested language

Text (Translation result)

Speech feature extraction Speech Speech features

Speech synthesis (Features) Text (Translation result)

Speech features

Speech

The AIM Metadata are given in Annex 6 Section 3.

6.1.4 Bidirectional Speech Translation (BST)

The AIMs and the data formats used by the Bidirectional Speech Translation Use Case are given

by Table 10.

Table 10 – Bidirectional Speech Translation AIMs and data formats

AIM Input Data Output Data

Speech Recognition Input speech Text

Translation Requested language

Text

Text (Translation result)

Speech feature extraction Speech Speech features

Speech synthesis (Features) Text (Translation result)

Speech features

Output speech

The AIM Metadata are given in Annex 7 Section 3.

6.1.5 One-to-many Speech Translation (OMT)

The AIMs and the data formats used by the One-to-many Speech Translation Use Case are given

by Table 11.

Table 11 – One-to-many Speech Translation AIMs and data formats

AIM Input Data Output Data

Speech Recognition Digital Speech Text

Translation Requested languages

Text

Speech

Text (Translation result)

Speech feature extraction Digital speech Speech features

Speech synthesis (Features) Text (Translation result)

Speech features

Digital speech

Text (Translation result)

The AIM Metadata are given in Annex 4 Section 8.

6.2 Data Formats

Table 12 lists all data formats specified in this Technical Specification. The first column gives

the name of the data format, the second the subsection where the data format is specified and the

third the Use Case(s) making use of it.

Table 12 – Data formats

Name of Data Format Subsection Use Case

Text 6.2.1 CWE

MQA

UST

BST

OMT

Speech 6.2.2 CWE

MQA

UST

BST

OMT

Video 6.2.3 CWE

Emotion 6.2.4 CWE

Text with emotion 6.2.5 CWE

Video of faces KB Query Format 0 CWE

Object identifier 6.2.7 MQA

Meaning 0 CWE

MQA

Intention 0 MQA

Language identifier 6.2.10 UST

BST

OMT

Speech features 6.2.11 UST

BST

OMT

6.2.1 Text

Encoded according to ISO/IEC 10646, Information technology – Universal Coded Character Set

(UCS) to support most languages in use.

6.2.2 Speech Segment

Speech Segment ia a .wav file of the digital representation of analogue speech sampled in the 8-

96 kHz frequency range and with 16-24 bits/sample (linear).

6.2.3 Video

Video satisfies the following specifications:

1. Pixel shape: square

2. Bit depth: 8-10 bits/pixel

3. Aspect ratio: 4/3 and 16/9

4. 640 < # of horizontal pixels < 1920

5. 480 < # of vertical pixels < 1080

6. Frame frequency 50-120 Hz

7. Scanning: progressive

8. Colorimetry: ITU-R BT709 and BT2020

9. Colour format: RGB and YUV

10. Compression: uncompressed; if compressed AVC, HEVC

6.2.4 Emotion

Human Emotion is represented by.

{

 "$schema": "http://json-schema.org/draft-07/schema",

 "definitions": {

 "EmotionType": {

 "type": "object",

 "properties": {

 "emotionDegree": {"type": "integer"},

"emotionName": {"type": "string"},

"emotionSetName": {"type": "string"},

}

"type": "object",

 "properties": {

 "primary": {"$ref": "#/definitions/EmotionType"},

 "secondary": {"$ref": "#/definitions/EmotionType"}

 }

}

Semantics of emotion

Name Definition
emotionType

Describes the emotion that the input carries.

emotionDegree

Describes the degree of the emotion expressed in number.

emotionName

Describes the name of the emotion.

emotionSetName Name of the emotion set which is used for describing the
final emotion. MPAI emotion set is used as a baseline and
other sets are possible.

The following list of emotions suitable for vocal expression seems to us reasonable, but is offered

without theoretical or research-based commitment. It has been collected and sorted from several

sources, some of them linked below under References.

Emotions are expressed vocally through combinations of prosody (pitch, rhythm, and volume

variations); separable speech effects (such as degrees of voice tension, breathiness, etc.; see Effects,

below); and vocal gestures (laughs, sobs, etc.).

Emotions can of course be combined: one can be both sad and angry. For that reason and others,

no list of emotion names can be definitive, just as no listing of color names could be final.

Accordingly, we suggest that a mechanism be defined whereby implementors of specific use cases

or AIMs (modules) for emotional speech can register with MPAI the set of emotions that these

offer to cover or enable, including unique names or identifiers. Registration procedures per

implementation should be designed by the MPAI authorities concerned with AIM and use case

registration in general, with consultations of the interested parties.

Basic Emotions originally following Paul Eckman [reference]

LEVEL 1 LEVEL 2 LEVEL 3

HAPPINESS happy joyful

content

delighted

amused

SADNESS sad lonely

grief-stricken

discouraged

depressed

disappointed

CALM calm peaceful/serene

resigned

FEAR fearful/scared terrified

anxious/uneasy

ANGER anger furious

irritated

frustrated

DISGUST disgust loathing

SOCIAL DOMINANCE,
CONFIDENCE

arrogant

confident

submissive

PRIDE/SHAME proud

ashamed

arrogant

guilty/remorseful/sorry

embarrassed

HURT hurt

jealous

APPROVAL, DISAPPROVAL admiring/approving

disapproving

indifferent

awed

contemptuous

SURPRISE surprised

astounded

startled

ATTENTION attentive expectant/anticipating

thoughtful

distracted/absent-minded

vigilant

hopeful/optimistic

INTEREST interested fascinated

curious

bored

UNDERSTANDING comprehending uncomprehending

bewildered/puzzled

BELIEF credulous skeptical

AROUSAL aroused/excited/energetic cheerful

playful

lethargic

sleepy

Semantics

Emotion Meaning

admiring/approving emotion due to perception that others' actions or results are

valuable

amused positive emotion combined with interest (cognitive)

anger emotion due to perception of physical or emotional damage
or threat

anxious/uneasy low or medium degree of fear, often continuing rather than
instant

aroused/excited/energetic cognitive state of alertness and energy

arrogant emotion communicating social dominance

arrogant high degree of pride, often offensive to others

astounded high degree of surprised

attentive cognitive state of paying attention

awed approval combined with incomprehension or fear

bewildered/puzzled high degree of incomprehension

bored not interested

calm relative lack of emotion

cheerful energetic combined with and communicating happiness

comprehending cognitive state of successful application of mental models to a

situation

confident emotion due to belief in ability

contemptuous high degree of disapproval

content medium or low degree of happiness, continuing rather than
instant

credulous cognitive state of conformance to mental models of a situation

curious interest due to drive to know or understand

delighted high degree of happiness, often combined with surprise

depressed high degree of sadness, continuing rather than instant,

combined with lethargy (see AROUSAL)

disappointed sadness due to failure of desired outcome

disapproving not approving

discouraged sadness combined with frustration

disgust emotion due to urge to avoid, often due to unpleasant
perception or disapproval

distracted/absent-minded not attentive to present situation due to competing thoughts

embarrassed shame due to consciousness of violation of social conventions

expectant/anticipating attentive to (expecting) future event or events

fascinated high degree of interest

fearful/scared emotion due to anticipation of physical or emotional pain or

other undesired event or events

frustrated angry due to failure of desired outcome

furious high degree of anger

grief-stricken sadness due to loss of an important social contact

guilty/remorseful/sorry shame due to consciousness of hurting or damaging others

Happy positive emotion, often continuing rather than instant

hopeful/optimistic expectation of good outcomes

hurt emotion due to perception that others have caused social pain

or embarrassment

indifferent neither approving nor disapproving

interested cognitive state of attentiveness due to salience or appeal to

emotions or drives

irritated low or medium degree of anger

jealous emotion due to perception that others are more fortunate or

successful

joyful high degree of happiness, often due to a specific event

lethargic not aroused

loathing high degree of disgust

lonely sadness due to insufficient social contact

peaceful/serene calm combined with low degree of happiness

playful energetic and communicating willingness to play

proud emotion due to perception of positive social standing

resigned calm due to acceptance of failure of desired outcome, often

combined with low degree of sadness

sad negative emotion, often continuing rather than instant,
often associated with a specific event

skeptical not credulous

sleepy not aroused due to need for sleep

startled surprised by a sudden event or perception

submissive emotion communicating lack of social dominance

surprised cognitive state due to violation of expectation

terrified high degree of fear

thoughtful attentive to thoughts

uncomprehending not comprehending

vigilant high degree of expectation or attentiveness

6.2.5 Text with Emotion

Text With Emotion is represented as follows.

6.2.5.1 Syntax

{

 "$schema": "http://json-schema.org/draft-07/schema",

 "definitions": {

 "TextWithEmotionType": {

 "type": "object",

 "properties": {

"text": {“type”: "string"},

 "emotionDegree": {"type": "integer"},

"emotionName": {"type": "string"},

"emotionSetName": {"type": "string"},

}

"type": "object",

 "properties": {

 "primary": {"$ref": "#/definitions/TextWithEmotionType"},

 "secondary": {"$ref": "#/definitions/TextWithEmotionType"}

 }

}

6.2.5.2 Semantics

Semantics of text with emotion

Name Definition
TextWithEmotionType

Describes the emotion that the text carries.

emotionDegree

Describes the degree of the emotion expressed in number.

emotionName

Describes the name of the emotion.

emotionSetName Name of the emotion set which is used for describing the
final emotion. MPAI emotion set is used as a baseline and
other sets are possible.

6.2.6 Video of faces KB Query Format

The Video of faces KB is queried with an Emotion. The response is a Video of a human face. All

faces must be aligned.

6.2.7 Object identifier

An object is identified as follows.

6.2.7.1 Syntax

{

 "$schema": "http://json-schema.org/draft-07/schema",

 "definitions": {

 "objectIdentifier": {

 "type": "object",

 "properties": {

"objectImageLabel": {“type”: "string"},

 "confidenceLevel": {"type": "integer"},

}

"type": "object",

 "properties": {

 "primary": {"$ref": "#/definitions/ObjectIdentifierType"},

 "secondary": {"$ref": "#/definitions/ObjectIdentifierType"}

 }

}

6.2.7.2 Semantics

Name Definition
objectIdentifier

Tool for describing the output of the “Video analysis AIM”.

objectImageLabel Describes the recognized object’s label in the object image.

confidenceLevel Describes the confidence level of the object image label
recognized by the “Video analysis”.

6.2.8 Meaning

This subclause specifies data formats to describe meaning which is the outputs of Language
Understanding AIM. The “meaning” consists of the following elements.

- POS_tagging
- NE_tagging
- Dependency_tagging
- SRL_tagging

6.2.8.1 Syntax

{

 "$schema": "http://json-schema.org/draft-07/schema",

 "definitions": {

 "meaning": {

 "type": "object",

 "properties": {

 "POS_tagging": {

 "POS_tagging_set": {“type”: "string"},

 " POS_tagging_result": {“type”: "string"}

 },

"NE_tagging": {

 "NE_tagging_set": {“type”: "string"},

 " NE_tagging_result": {“type”: "string"}

 }

"dependency_tagging": {

 "dependency_tagging_set": {“type”: "string"},

 "dependency_tagging_result": {“type”: "string"}

 }

"SRL_tagging": {

 " SRL_tagging_set": {“type”: "string"},

 " SRL_tagging_result": {“type”: "string"}

 }

 }

 },

 "type": "object",

 "properties": {

 "primary": { "$ref": "#/definitions/meaning" },

 "secondary": { "$ref": "#/definitions/meaning" }

 }

}

6.2.8.2 Semantics

Name Definition
Meaning Provides an abstract of description of Language analysis

results, which can be done in Language Understanding AIM.
POS_tagging Describes POS tagging results including information on the

POS tagging set and tagged results of the User question.
POS: Part of Speech such as noun, verb, etc.

NE_tagging Describes NE tagging results including information on the
NE tagging set and tagged results of the User question. NE:
Named Entity such as Person, Organization, Fruit, etc.

dependency_tagging Describes dependency tagging results including
information on the dependency tagging set and tagged
results of the User question. Dependency indicates the
structure of the sentence such as subject, object, head of the
relation, etc.

SRL_tagging Describes SRL(Semantic Role Labelling) tagging results
including information on the SRL tagging set and tagged
results of the User question. SRL indicates the semantic
structure of the sentence such as agent, location, patient
role, etc.

6.2.9 Intention

This subclause specifies data formats to describe intention which is the outputs of Question
analysis AIM. The “intention” consists of the following elements.

- qtopic
- qfocus
- qLAT
- qSAT

6.2.9.1 Syntax

{

 "$schema": "http://json-schema.org/draft-07/schema",

 "definitions": {

 "Intention": {

 "type": "object",

 "properties": {

 "qtopic": {“type”: "string"},

"qfocus": {“type”: "string"},

"qLAT": {“type”: "string"},

"qSAT": {“type”: "string"},

"qdomain": {“type”: "string"},

}

"type": "object",

 "properties": {

 "primary": { "$ref": "#/definitions/intention" },

 "secondary": { "$ref": "#/definitions/intention" }

 }

}

6.2.9.2 Semantics

Name Definition
Intention Provides abstracts of Intention of User Question

description. Intention of User Question is sent to QA AIM
for providing answers to the user.

qtopic Describes topic of the question. Question topic is the object
or event that the question is about.
Ex. Qtopic is King Lear in “Who is the author of King Lear?”.

qfocus Describes the focus of the question, which is the part of the
question that, if replaced by the answer, makes the
question a stand-alone statement. Ex. What, where, who,
what policy. Which river, etc.
Example.

Question: Who is the president of USA? (The word

“Who” is the focus of the question and it will be

replaced by “Bydon” in the Answer.)

Answer: Bydon is the president of USA.

Name Definition
qLAT

Describes the lexical answer type of the question.

qSAT Describes the semantic answer type of the question. QSAT
corresponds to Named Entity type of the language analysis
results.

qdomain Describes the domain of the question such as “science”,
“weather”, “history”.
Ex. Who is the third king of Yi dynasty in Korea? (qdomain:
history)

The following example shows the question analysis result of the user’s question, “Who is the author
of King Lear?” The question analysis result in the example shows that the domain of the question is
“Literature”, the topic of the question is “King Lear”, the focus of the question is “Who”.

"intention": [

 {

 "qdomain": "Literature",

 "qtopic": " King Lear ",
 "qfocus": " who ",
 "qLAT": " author ",
 "qSAT": " person ",

}
]

The following example shows the result of the analysed question of “How do you make Kimchi?”
The question analysis result in the example shows that the domain of the question is “Cooking”, the
topic of the question is “Kimchi”, the focus of the question is “how”.

"intention": [

 {

 "qdomain": "Cooking",

 "qtopic": " Kimchi",
 "qfocus": " How ",

 "qLAT": " cooking method ",
 "qSAT": " method ",

}
]

6.2.10 Language identifier

Represented as specified by ISO 639 – Codes for the Representation of Names of Languages —

Part 1: Alpha-2 Code.

6.2.11 Speech Features

Speech Features are digitally represented as follows.

{

 "$schema": "http://json-schema.org/draft-07/schema",

 "definitions": {

 "SpeechFeatures": {

 "type": "object",

 "properties": {

 "pitch": {“type”: "integer"},

"tone": {"type": "string"},

"intonation": {"type": "string"},

"intensity": {"type": "string"},

"speed": {"type": "string"},

"emotion": {"type": "EmotionType"},

"NNspeechFeatures": {"type": "vector of floating point"},

}

"type": "object",

 "properties": {

 "primary": { "$ref": "#/definitions/SpeechFeatureType" },

 "secondary": { "$ref": "#/definitions/SpeechFeatureType" }

 }

}

6.2.11.1 Semantics

Name Definition
SpeechFeatures Describes speech features extracted from the input speech.

SpeechFeatureType Describes type of the speech features extracted from the input

speech.

NNSpeechFeatures Describes speech features extracted from the input speech by
Neural Network

pitch Describes perceived tone frequency of a sound. Pitch is the
quality that makes it possible to judge sounds as "higher"
and "lower".

tone
Tone is a variation in the pitch of the voice while speaking.

intonation Intonation, in phonetics, the melodic pattern of an
utterance. Intonation is primarily a matter of variation in
the pitch level of the voice, but in such languages as English,
stress and rhythm are also involved. Intonation conveys
differences of expressive meaning (e.g., surprise, anger,
wariness).

intensity Describes loudness of a speech which is subjective
perception of sound pressure.

speed

Describes speech tempo or speech rate which a measure of
the number of speech units of a given type produced within
a given amount of time.

emotion
Describes the emotion that the input speech carries.

Name Definition
emotiontype

Describes the type of emotion that the input speech carries.

7 References

The references provided here are for information purpose.

1. [1] Ekman, Paul (1999), "Basic Emotions", in Dalgleish, T; Power, M (eds.), Handbook of

Cognition and Emotion (PDF), Sussex, UK: John Wiley & Sons

Annex 1 – MPAI-wide terms and definitions (Normative)

The Terms used in this standard whose first letter is capital and are not already included in Table

1 are defined in Table 13.

Table 13 – MPAI-wide Terms

Term Definition

AI Framework

(AIF)

The environment where AIWs are executed.

AI AIW (AIW) An organised aggregation of AIMs implementing a Use Case receiving

AIM-specific Inputs and producing AIM-specific Outputs according to its

Function.

AI Module (AIM) A processing element receiving AIM-specific Inputs and producing AIM-

specific Outputs according to according to its Function.

Application A usage domain target of an Application Standard

Conformance The attribute of an Implementation of being a correct technical Implem-

entation of a Technical Specification.

Conformance

Tester

An entity authorised by MPAI to Test the Conformance of an Implem-

entation.

Conformance

Testing

The normative document specifying the procedures, the tools, the data sets

and/or the data set characteristics to Test the Conformance of an Implem-

entation.

Conformance

Testing Means

Procedures, tools, data sets and/or data set characteristics to Test the

Conformance of an Implementation.

Data format The standard digital representation of data and their semantics.

Ecosystem The ensemble of MPAI, MPAI Store, Implementers, Conformance

Testers, Performance Testers and Users of MPAI-AIF Implementations as

needed to enable an Interoperability Level.

Explainability The ability to trace the output of an implementation back to the inputs that

have produced it.

Fairness The attribute of an implementation whose extent of applicability can be

assessed by making the training set and/or network open to testing for bias

and unanticipated results.

Function The expected result of a AIW of an AIM on input data.

Identifier A name that uniquely identifies an Implementation.

Implementation An embodiment of:

1. The MPAI-AIF Technical Specification.

2. A AIW/AIM of a particular Level (1-2-3) from a Use Case of an

Application Standard.

Interoperability The possibility of an AIM Implementation to be functionally replaced by

another AIM Implementation having the same Interoperability Level:

Interoperability

Level

One of the following:

Level 1 AIM Implementations are proprietary but their AIWs can be

executed in an AIF Implementations.

Level 2 AIM Implementations Conform to the Conformance Testing

of an Application Technical Specification.

Level 3 AIM Implementations Perform according to the Performance

Testing of an Application Technical Specification.

Normativity The set of attributes of a technology or a set of technologies specified by

the applicable parts of an MPAI standard.

Performance The attribute of an Implementation of being Reliable, Robust, Fair and

Replicable.

Performance

Assessment

The normative document specifying the procedures, the tools, the data sets

and/or the data set characteristics to Assess the Grade of Performance of

an Implementation.

Performance

Assessment Means

Procedures, tools, data sets and/or data set characteristics to Assess the

Performance of an Implementation.

Performance

Assessor

An entity authorised by MPAI to Assess the Performance of an

Implementation in a given Application domain

Profile A particular subset of the technologies that are used in MPAI-AIF or a Use

Case and, where applicable, the classes, other subsets, options and

parameters relevant to that subset.

Reference

Software

A technically correct software implementation of a Technical

Specification containing source code, or source and compiled code.

Reliability The attribute of an Implementation that performs as specified by the

standard, profile and version the Implementation refers to, e.g., within the

application scope, stated limitations, and for the period of time specified

by the Implementer.

Replicability The attribute of an Implementation whose Performance, as Assessed by a

Performer, can be replicated, within an agreed level, by another Performer.

Robustness The attribute of an Implementation that copes with data outside of the

stated application scope with an estimated degree of confidence.

Service Provider An entrepreneur who offers an Implementation as a service (e.g., a

recommendation service) to Users.

Standard The ensemble of Technical Specification, Reference Software, Confor-

mance Testing and Performance Assessment of an MPAI application

Standard. MPAI-AIF does not include Performance Assessment.

Technical

Specification

(Framework) the normative specification of the AI Framework.

(Application) the normative specification of the set of Use Cases

belonging to an Application Domain along with the AIMs required to

Implement the Use Cases. the collection of Use Cases relevant to the

Application Domain that include:

1. The formats of the Input/Output data of the AIWs implementing the

Use Cases.

2. The Topology and Connections of the AIMs of the Use Cases.

3. The formats of the Input/Output data of the AIMs belonging the AIW.

Use Case A particular instance of the Application domain target of an Application

Standard.

Version A revision or extension of a Standard or of one of its elements.

Annex 2 - Notices and Disclaimers Concerning MPAI Standards

(Informative)

The notices and legal disclaimers given below shall be borne in mind when downloading and using

approved MPAI Standards downloaded from https://www.mpai.community/access/.

In the following, “Standard” means the collection of four documents: “Technical Specification”,

“Reference Software” and “Conformance Testing” and, where applicable, “Performance Testing”

approved and published by MPAI at https://www.mpai.community/resources/.

Life cycle of MPAI Standards

MPAI Standards are developed in accordance with the MPAI Statutes

(https://mpai.community/statutes/). An MPAI Standard may only be developed when a Framework

Licence has been adopted. MPAI Standards are developed by especially established MPAI

Development Committees who operate on the basis of consensus, as specified in Annex 1 of the

MPAI Statutes (https://mpai.community/statutes/). While the MPAI General Assembly and the

Board of Directors administer the process of the said Annex 1, MPAI does not independently

evaluate, test, or verify the accuracy of any of the information or the suitability of any of the

technology choices made in its Standards.

MPAI Standards may be modified at any time by corrigenda or new editions. A new edition,

however, may not necessarily replace an existing MPAI standard. In order to determine the status

of any given MPAI Standard, a user should visit https://mpai.community/access/ web page.

Comments on MPAI Standards are welcome from any interested parties, whether MPAI members

or not. Comments shall mandatorily include the name and the version of the MPAI Standard and,

if applicable, the specific page or line the comment applies to. Comments should be sent to the

MPAI Secretariat secretariat@mpai.community. Comments will be reviewed by the appropriate

committee for their technical relevance. However, MPAI does not provide interpretation,

consulting information, or advice on MPAI Standards. Interested parties are invited to join MPAI

so that they can attend the relevant Development Committees.

Coverage and Applicability of MPAI Standards

MPAI makes no warranties or representations concerning its Standards, and expressly disclaims

all warranties, expressed or implied, concerning any of its Standards, including but not limited to

the warranties of merchantability, fitness for a particular purpose, non-infringement etc. MPAI

Standards are supplied “AS IS”.

The existence of an MPAI Standard does not imply that there are no other ways to produce and

distribute products and services in the scope of the Standard. Technical progress may render the

technologies included in the MPAI Standard obsolete by the time the Standard is used, especially

in a field as dynamic as AI. Therefore, those looking for standards in the Data Compression by

Artificial Intelligence area should carefully assess the suitability of MPAI Standards for their needs.

IN NO EVENT SHALL MPAI BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO: THE NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER

SUCH DAMAGE WAS FORESEEABLE.

MPAI alerts users that practicing its Standards may infringe patents and other rights of third parties.

Users of MPAI Standards should consider all applicable laws and regulations when using an MPAI

Standard. The validity of Conformance Testing is strictly technical and refers to the correct

implementation of the MPAI Standard. Moreover, positive Performance Assessment of an

implementation applies exclusively in the context of the MPAI Governance

(https://mpai.community/governance/) and does not imply compliance with any regulatory

requirements in the context of any jurisdiction. Therefore, it is the responsibility of the MPAI

Standard implementer to observe or refer to the applicable regulatory requirements. By publishing

an MPAI Standard, MPAI does not intend to promote actions that are not in compliance with

applicable laws, and the Standard shall not be construed as doing so. In particular, users should

evaluate MPAI Standards from the viewpoint of data privacy and data ownership in the context of

their jurisdictions.

Implementers and users of MPAI Standards documents are responsible for determining and

complying with all appropriate safety, security, environmental and health and all applicable laws

and regulations.

Copyright

MPAI draft and approved standards, whether they are in the form of documents or as web pages

or otherwise, are copyrighted by MPAI under Swiss and international copyright laws. MPAI

Standards are made available and may be used for a wide variety of public and private uses, e.g.,

implementation, use and reference, in laws and regulations and standardisation. By making these

documents available for these and other uses, however, MPAI does not waive any rights in

copyright to its Standards. For inquiries regarding the copyright of MPAI standards, please contact

the MPAI Secretariat secretariat@mpai.community.

The Reference Software of an MPAI Standard is released with the MPAI Modified Berkeley

Software Distribution licence (link). However, implementers should be aware that the Reference

Software of an MPAI Standard may reference some third party software that may have a different

licence.

Annex 3 – The Governance of the MPAI Ecosystem (Informative)

1 Level 1 of MPAI standardisation

With reference to Figure 1, MPAI issues and maintains a standard – called MPAI-AIF – composed

of the following:

1. An environment called AI Framework (AIF) where aggregations of interconnected AI AIWs

(AIW) AIMs called AIWs are executed. An AIW implements a use case.

2. AIMs exposing standard interfaces (e.g., access to Controller API) operating as part of an AIW

in an AIF.

3. A distribution system of AIFs, AIWs and AIMs called MPAI Store that an AIF can access to

download AIWs and AIMs.

MPAI standards include four documents:

1. The Technical Specification specifies the elements and operation of the standard and is the

main source of information to Implementers.

2. The Reference Software is a technically correct implementation of the Technical Specification

that can be used as a supplement to the Technical Specification to guide Implementations.

3. The Conformance Testing specifies the process, the tools and the data to test the Conformance

of an Implementation.

4. The Performance Assessment specifies the process, the tools and the data or data specification

to test the Performance of the Implementation, i.e., of being Reliable, Robust, Fair and

Replicable.

Implementers’

Benefits

Upload to the MPAI Store Implementations of MPAI-AIF

Upload Implementations of AIWs and AIMs performing proprietary functions.

Have a global distribution channel of AIM and AIW implementations that can

execute in an AIF Framework.

MPAI Store’s

role

Tests Implementations for conformance to the MPAI-AIF Technical

Specification and verifies the Implementations’ security, e.g., absence of

malware.

2 Level 2 of MPAI standardisation

MPAI normatively specifies the following aspects of an AI Module (AIM):

4. The format and semantics of the input data, e.g., “video of a talking human face”.

5. The function, e.g., “identification of the emotion on the face of and the meaning of the sentence

uttered by a speaking human”.

6. The format of the output data, e.g., “emotion” and “meaning”.

Figure 10 – An AIM with embedded

knowledge

Figure 11 – An AIM with access to an

external knowledge base

AIMs can be trained with real data, i.e., made to learn from real data to execute a specific function

on new data in the same or similar context (Figure 10). The same function, however, can be

achieved with an AIM implemented, e.g., with Data Processing technologies (Figure 11). If an

AIM needs Access to an external knowledge base, MPAI also specifies how the AIM interfaces

with it.

MPAI only specifies the mentioned input and output data, and the function of an AIM, but is silent

on how the input data are processed.

MPAI Standards are generally agnostic of the implementation technology adopted: hardware,

software or hybrid hardware and software.

MPAI Application Standards (as opposed to MPAI-AIF) normatively specify AIWs supporting

MPAI-identified Use Cases. An example of a Use Case is “interpreting a sentence from a specified

language to another preserving the features of the original sentence”, as in Figure 2 that describes

an example of AIW standardised by MPAI.

An MPAI Application Standard specifies:

1. The format and semantics of the input data, e.g., “source speech”, “source text” and “desired

target language”.

2. The function, e.g., “translating a sentence from a language to another, and pronounce it pres-

erving the features of the original speech”.

3. The format of the output data, e.g., “speech” and “text”.

In a Level 1 implementation of the AIW of Figure 2 having the depicted input and output data,

an implementer can use proprietary AIMs within the constraints of the MPAI-AIF Standard. In a

Level 2 implementation, however, the AIW must be implemented with AIMs that conform with

an MPAI application standard.

Implementers’

benefits

Upload to the MPAI Store Implementations of AIWs and AIMs.

Have a global distribution channel of their AIM and AIW Implementations.

Users’

benefits

Rely on Implementations having Use Case and AIMs function interfaces that

have been reviewed during standardisation.

Achieve a level of explainability of AIW operation because the AIM functions

and interfaces are known.

Market’s

benefits

Open AIM markets foster competition leading to better products.

Competition of AIM Implementations fosters AI innovation.

MPAI Store’s

role

Tests Implementations for Conformance with the relevant MPAI Application

Standard, and verifies the Implementations’ security.

Indicates unambiguously that the AIM and AIW Implementations are Level 2

3 Level 3 of MPAI standardisation

MPAI does not generally set standards on how and with what data an AIM should be trained

because this is an important differentiator that promotes competition leading to better AI systems.

However, the performance of an AIM is typically higher if the data used for training are in greater

quantity and more in tune with the scope. Training data that have large variety and cover the spec-

trum of all cases of interest in breadth and depth typically lead to implementations of higher

“quality”.

For Level 3, MPAI normatively specifies the process, the tools and the data or the characteristics

of the data to be used to Assess the Grade of Performance of an AIM or an AIW.

The definition of Performance is specific to an application domain and is defined in the context of

that domain. Unlike Conformance Testing of an Implementation whose outcome has a binary value,

Performance Assessment of an Implementation does not necessarily have a binary value. The Per-

formance Assessment of an MPAI standard specifies which of the 4 attributes should be assessed.

Implementers’

benefits

Can claim their Implementation has passed Performance Assessment.

Users’

benefits

Get assurance the Implementation being used performs correctly, e.g., it has

been properly trained.

Market’s

benefits

Implementation Grades stimulate the development of more Performing AIM

and AIW Implementations.

MPAI Store’s

role

Verifies the Implementations’ security.

Indicates unambiguously AIM and AIW Implementations are Level 3.

4 The MPAI ecosystem

Figure 12 is a high-level description of the MPAI ecosystem operation applicable to fully

conforming MPAI implementations:

1. MPAI establishes and controls the not-for-profit MPAI Store (step 1).

2. MPAI appoints Performance Assessors (step 2).

3. MPAI publishes standards (step 3).

4. Implementer submits an Implementation to a Performance Assessor (step 4).

5. If the Performance of the Implementation is acceptable, Performance Assessor informs the

Implementer (step 5a) and the MPAI Store (step 5b).

6. Implementer submits Implementation to the MPAI Store (step 6). Then the Store internally

Tests the Conformance and security of the Implementation.

7. User downloads Implementation (step 7).

Figure 12 – The MPAI ecosystem operation

The MPAI ecosystem allows an implementer of a standard AIM with outstanding features to

access the entire market because users will download the AIM for use in their AIFs. Users will

benefit from AIMs produced by a competitive AIM market that builds on and promotes innovation.

Annex 4 – AIW and AIM Metadata of MMC-CWE

1 ID linearization

Note: Fields that are used to generate automatic IDs may not contain “:” characters.

When one needs to reference them from other contexts, automatic unique IDs for AIWs/AIMs can

be generated with the following formula:
AIM->Implementer_ID:(S:AIM->Standard->Name:AIM->Standard->Version:AIM->Standard->Use_Case:AIM->St

andard->Name|U:AIM->User_Defined->Name):AIM->Version

Examples:
• 00089:(S:(MMC:CWE:2:_MAIN_)):123 // A workflow

• 00089:(S:(MMC:CWE:2:GovernanceAssessment)):345 // A sub-module of a workflow

• 00089:(U:PCA_based_analysis):75

2 AIW metadata for CWE
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store, e.g., 00089

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "1",

 "Name": "_MAIN_" // Always _MAIN_ for workflows

 } | "User_Defined": { // Provided by implementer

 "Name": "Conversation with Emotion"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main" // Defined by MPAI, selected by implementer

 "Description": "This AIW implements CWE application of MPAI-MMC",

 "Ports": [

 {

 "Name": "Text_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Viddeo_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_4",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech_3",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Video_2",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

]

 "AIMs": [

 // Automatic ID for module 1

 "SpeechRecogniton": "@00089:(S:(MMC:CWE:2:SpeechRecogniton)):345"

 // Automatic ID for module 2

 "VideoAnalysis": "@00089:(S:(MMC:CWE:2:VideoAnalysis)):12",

 // Automatic ID for module 3

 "LanguageUnderstanding": "@00089:(S:(MMC:CWE:2:LanguageUnderstanding)):333",

 // Automatic ID for module 4

 "DialogProcessing": "@00089:(S:(MMC:CWE:2:DialogProcessing)):2",

 // Automatic ID for module 5

 "SpeechSynthesis": "@00089:(S:(MMC:CWE:2:SpeechSynthesis)):27"

// Automatic ID for module 6

 "LipAnimation": "@00089:(S:(MMC:CWE:2:LipAnimation)):32"

],

 "Topology": [

 "Text_1": {

 "Output": {

 "Module": "",

 "Port”: "Text_1"

 },

 "Input": {

 "Module": "LanguageUnderstanding",

 "Port": "Text_1"

 }

 },

"Text_2": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Text_2"

 },

 "Input": {

 "Module": "LanguageUnderstanding",

 "Port": "Text_2"

 }

 },

"Text_3": {

 "Output": {

 "Module": "LanguageUnderstanding",

 "Port”: "Text_3"

 },

 "Input": {

 "Module": "DialogProcessing",

 "Port": "Text_3"

 }

 },

"Text_4": {

 "Output": {

 "Module": "DialogProcessing",

 "Port”: "Text_4"

 },

 "Input": {

 "Module": "",

 "Port": "Text_4"

 }

 },

 "Speech_1": {

 "Output": {

 "Module": "",

 "Port”: " Speech_1"

 },

 "Input": {

 "Module": "SpeechRecognition",

 "Port": " Speech_1"

 }

 },

"Speech_2": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: " Speech_2"

 },

 "Input": {

 "Module": "LipAnimation",

 "Port": " Speech_2"

 }

 },

"Speech_3": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: " Speech_3"

 },

 "Input": {

 "Module": "",

 "Port": " Speech_3"

 }

 },

 "Video_1": {

 "Output": {

 "Module": "",

 "Port”: "Video_1"

 },

 "Input": {

 "Module": "VideoAnalysis",

 "Port": "Video_1"

 }

 },

"Video_2": {

 "Output": {

 "Module": "LipAnimation",

 "Port”: "Video_2"

 },

 "Input": {

 "Module": "",

 "Port": "Video_2"

 }

 },

"Meaning_1": {

 "Output": {

 "Module": "LanguageUnderstanding",

 "Port”: "Meaning_1"

 },

 "Input": {

 "Module": "DialogProcessing",

 "Port": "Meaning_1"

 }

 },

"Meaning_2": {

 "Output": {

 "Module": "VideoAnalysis",

 "Port”: "Meaning_2"

 },

 "Input": {

 "Module": "DialogProcessing",

 "Port": "Meaning_2"

 }

 },

"Emotion_1": {

 "Output": {

 "Module": "LanguageUnderstanding",

 "Port”: "Emotion_1"

 },

 "Input": {

 "Module": "EmotionRecognition",

 "Port": "Emotion_1"

 }

 },

"Emotion_2": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Emotion_2"

 },

 "Input": {

 "Module": "EmotionRecognition",

 "Port": "Emotion_2"

 }

 },

"Emotion_3": {

 "Output": {

 "Module": "VideoAnalysis",

 "Port”: "Emotion_3"

 },

 "Input": {

 "Module": "EmotionRecognition",

 "Port": "Emotion_3"

 }

 },

"FinalEmotion_1": {

 "Output": {

 "Module": "EmotionRecognition",

 "Port”: "FinalEmotion_1"

 },

 "Input": {

 "Module": "DialogProcessing",

 "Port": "FinalEmotion_1"

 }

 },

"FinalEmotion_2": {

 "Output": {

 "Module": "DialogProcessing ",

 "Port”: "FinalEmotion_2"

 },

 "Input": {

 "Module": "LipAnimation",

 "Port": "FinalEmotion_2"

 }

 },

"TextWithEmotion": {

 "Output": {

 "Module": "DialogProcessing ",

 "Port”: "TextWithEmotion"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "TextWithEmotion"

 }

 },

],

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "ConversationWithEmotion",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/
 }

]

}

https://mpai.community/standards/mpai-mmc/

3 AIM metadata

3.1 SpeechRecognition
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "2",

 "Name": "SpeechRecognition"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSR"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements speech recognition function that converts

speech to text of user utterance.",

 "Ports": [

 {

 "Name": "Speech",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

 "Protocol": ""

 }

{

 "Name": "Emotion_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechRecognition",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

https://mpai.community/standards/mpai-mmc/

3.2 Video Analysis

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "2",

 "Name": "VideoAnalysis"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYVA"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements video analysis.",

 "Ports": [

 {

 "Name": "Video_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Emotion_3",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

{

 "Name": "Meaning_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "VideoAnalysis",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

https://mpai.community/standards/mpai-mmc/

3.3 Language Understanding

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "2",

 "Name": "LanguageUnderstanding "

 } | "User_Defined": { // Provided by implementer

 "Name": "MYLU"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Language Understanding function.",

 "Ports": [

 {

 "Name": "Text_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Meaning_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_3",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Emotion_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "LanguageUnderstanding",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.4 Emotion Recognition

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "2",

 "Name": "EmotionRecognition"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYER"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Emotion Recognition function.",

 "Ports": [

 {

 "Name": "Emotion_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Emotion_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Emotion_3",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "FinalEmotion_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "EmotionRecognition",

https://mpai.community/standards/mpai-mmc/

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.5 Dialog Processing

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "2",

 "Name": "DialogProcessing"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYDP"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Dialog Processing function.",

 "Ports": [

 {

 "Name": "Meaning_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Meaning_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_3",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "FinalEmotion_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TextWithEmotion",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "FinalEmotion_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

https://mpai.community/standards/mpai-mmc/

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "DialogProcessing",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.6 Speech Synthesis

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "2",

 "Name": "SpeechSynthesis"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSS"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Synthesis function.",

 "Ports": [

 {

 "Name": "TextWithEmotion",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Speech_3",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 }

],

https://mpai.community/standards/mpai-mmc/

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechSynthesis",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.7 Lip Animation

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "CWE",

 "Version": "2",

 "Name": "LipAnimation"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYLA"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Lip Animation function.",

 "Ports": [

 {

 "Name": "Speech_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "FinalEmotion_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Video_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

https://mpai.community/standards/mpai-mmc/

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "LipAnimation",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

https://mpai.community/standards/mpai-mmc/

Annex 5 – AIW and AIM Metadata of MMC-MQA

1 ID linearization

Note: Fields that are used to generate automatic IDs may not contain “:” characters.

When one needs to reference them from other contexts, automatic unique IDs for AIWs/AIMs can

be generated with the following formula:
AIM->Implementer_ID:(S:AIM->Standard->Name:AIM->Standard->Version:AIM->Standard->Use_Case:AIM->St

andard->Name|U:AIM->User_Defined->Name):AIM->Version

Examples:
• 00089:(S:(MMC:CWE:2:_MAIN_)):123 // A workflow

• 00089:(S:(MMC:CWE:2:GovernanceAssessment)):345 // A sub-module of a workflow

• 00089:(U:PCA_based_analysis):75

2 AIW metadata for MQA
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store, e.g., 00089

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "MQA",

 "Version": "1",

 "Name": "_MAIN_" // Always _MAIN_ for workflows

 } | "User_Defined": { // Provided by implementer

 "Name": "Multimodal Question Answering"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main" // Defined by MPAI, selected by implementer

 "Description": "This AIW implements MQA application of MPAI-MMC",

 "Ports": [

 {

 "Name": "Text_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Video",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_6",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech_2",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 }

]

 "AIMs": [

 // Automatic ID for module 1

 "SpeechRecogniton": "@00089:(S:(MMC:MQA:2:SpeechRecogniton)):345"

 // Automatic ID for module 2

 "VideoAnalysis": "@00089:(S:(MMC:MQA:2:VideoAnalysis)):12",

 // Automatic ID for module 3

 "LanguageUnderstanding": "@00089:(S:(MMC:MQA:2:LanguageUnderstanding)):333",

 // Automatic ID for module 4

 "QuestionAnalysis": "@00089:(S:(MMC:MQA:2:QuestionAnalysis)):2",

// Automatic ID for module 5

 "QuestionAnswering": "@00089:(S:(MMC:MQA:2:QuestionAnswering)):22",

 // Automatic ID for module 6

 "SpeechSynthesis": "@00089:(S:(MMC:MQA:2:SpeechSynthesis)):27"

],

 "Topology": [

 "Text_1": {

 "Output": {

 "Module": "",

 "Port”: "Text_1"

 },

 "Input": {

 "Module": "LanguageUnderstanding",

 "Port": "Text_1"

 }

 },

"Text_2": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Text_2"

 },

 "Input": {

 "Module": "LanguageUnderstanding",

 "Port": "Text_2"

 }

 },

"Text_3": {

 "Output": {

 "Module": "LanguageUnderstanding",

 "Port”: "Text_3"

 },

 "Input": {

 "Module": "QuestionAnswering",

 "Port": "Text_3"

 }

 },

"Text_4": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Text_4"

 },

 "Input": {

 "Module": "QuestionAnswering",

 "Port": "Text_4"

 }

 },

"Text_5": {

 "Output": {

 "Module": "QuestionAnswering",

 "Port”: "Text_5"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "Text_5"

 }

 },

"Text_6": {

 "Output": {

 "Module": "QuestionAnswering",

 "Port”: "Text_6"

 },

 "Input": {

 "Module": "",

 "Port": "Text_6"

 }

 },

 "Speech_1": {

 "Output": {

 "Module": "",

 "Port”: " Speech_1"

 },

 "Input": {

 "Module": "SpeechRecognition",

 "Port": " Speech_1"

 }

 },

"Speech_2": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: " Speech_2"

 },

 "Input": {

 "Module": "",

 "Port": " Speech_2"

 }

 },

 "Video": {

 "Output": {

 "Module": "",

 "Port”: "Video"

 },

 "Input": {

 "Module": "VideoAnalysis",

 "Port": "Video"

 }

 },

"Meaning_1": {

 "Output": {

 "Module": "LanguageUnderstanding",

 "Port”: "Meaning_1"

 },

 "Input": {

 "Module": "QuestionAnswering",

 "Port": "Meaning_1"

 }

 },

"Meaning_2": {

 "Output": {

 "Module": "LanguageUnderstanding",

 "Port”: "Meaning_2"

 },

 "Input": {

 "Module": "QuestionAnalysis",

 "Port": "Meaning_2"

 }

 },

"Intention": {

 "Output": {

 "Module": " QuestionAnalysis",

 "Port”: "Intention"

 },

 "Input": {

 "Module": "QuestionAnswering",

 "Port": "Intention"

 }

 },

"ObjectIdentifier": {

 "Output": {

 "Module": "VideoAnalysis",

 "Port”: "ObjectIdentifier"

 },

 "Input": {

 "Module": "EmotionRecognition",

 "Port": "ObjectIdentifier"

 }

 }

],

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "MultimodalQuestionAnswering",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/
 }

]

}

3 AIM metadata

3.1 SpeechRecognition
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "MQA",

 "Version": "2",

 "Name": "SpeechRecognition"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSR2"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements speech recognition function that converts

speech to text of user utterance.",

 "Ports": [

 {

 "Name": "Speech_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

 "Protocol": ""

 }

{

 "Name": "Text_4",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

https://mpai.community/standards/mpai-mmc/

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechRecognition",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.2 Video Analysis

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "MQA",

 "Version": "2",

 "Name": "VideoAnalysis"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYVA2"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements video analysis.",

 "Ports": [

 {

 "Name": "Video",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "ObjectIdentifier",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

https://mpai.community/standards/mpai-mmc/

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "VideoAnalysis",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.3 Language Understanding

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "MQA",

 "Version": "2",

 "Name": "LanguageUnderstanding "

 } | "User_Defined": { // Provided by implementer

 "Name": "MYLU2"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Language Understanding function for MQA.",

 "Ports": [

 {

 "Name": "Text_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "ObjectIdentifier",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Meaning_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Meaning_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_3",

https://mpai.community/standards/mpai-mmc/

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "LanguageUnderstanding",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.4 Question Analysis

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "MQA",

 "Version": "2",

 "Name": "QuestionAnalysis"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYQA"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Question Analysis function.",

 "Ports": [

 {

 "Name": "Meaning_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Intention",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

https://mpai.community/standards/mpai-mmc/

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "QuestionAnalysis",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.5 Question Answering

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "MQA",

 "Version": "2",

 "Name": "QuestionAnswering"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYQANS"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Question Answering function.",

 "Ports": [

 {

 "Name": "Meaning_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_3",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_4",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_5",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

},

{

https://mpai.community/standards/mpai-mmc/

 "Name": "Text_6",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "QuestionAnswering",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.6 Speech Synthesis (Text)

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "MQA",

 "Version": "2",

 "Name": "SpeechSynthesis2"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSS"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Synthesis function for MQA.",

 "Ports": [

 {

 "Name": "Text_5",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

https://mpai.community/standards/mpai-mmc/

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechSynthesis2",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

https://mpai.community/standards/mpai-mmc/

Annex 6 – AIW and AIM Metadata of MMC-UST

1 ID linearization

Note: Fields that are used to generate automatic IDs may not contain “:” characters.

When one needs to reference them from other contexts, automatic unique IDs for AIWs/AIMs can

be generated with the following formula:
AIM->Implementer_ID:(S:AIM->Standard->Name:AIM->Standard->Version:AIM->Standard->Use_Case:AIM->St

andard->Name|U:AIM->User_Defined->Name):AIM->Version

Examples:
• 00089:(S:(MMC:CWE:2:_MAIN_)):123 // A workflow

• 00089:(S:(MMC:CWE:2:GovernanceAssessment)):345 // A sub-module of a workflow

• 00089:(U:PCA_based_analysis):75

2 AIW metadata for UST
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store, e.g., 00089

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "UST",

 "Version": "1",

 "Name": "_MAIN_" // Always _MAIN_ for workflows

 } | "User_Defined": { // Provided by implementer

 "Name": "Unidirectional Speech Translation"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main" // Defined by MPAI, selected by implementer

 "Description": "This AIW implements UST application of MPAI-MMC",

 "Ports": [

 {

 "Name": "RequestedLanguage",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SourceText",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SourceSpeech_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceSpeech_2",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_3",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 }

]

 "AIMs": [

 // Automatic ID for module 1

 "SpeechRecogniton": "@00089:(S:(MMC:UST:2:SpeechRecogniton)):345"

 // Automatic ID for module 2

 "Translation": "@00089:(S:(MMC:UST:2:Translation)):12",

 // Automatic ID for module 3

 "SpeechFeatureExtraction":

"@00089:(S:(MMC:UST:2:LanguageUnderstanding)):333",

 // Automatic ID for module 4

 “SpeechSynthesis": "@00089:(S:(MMC:UST:2:SpeechSynthesis)):27"

],

 "Topology": [

 "RequestedLanguage": {

 "Output": {

 "Module": "",

 "Port”: "RequestedLanguage"

 },

 "Input": {

 "Module": "Translation",

 "Port": "RequestedLanguage"

 }

 },

"SourceText": {

 "Output": {

 "Module": "",

 "Port”: "SourceText"

 },

 "Input": {

 "Module": "Translation",

 "Port": "SourceText "

 }

 },

 "SourceSpeech_1": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_1"

 },

 "Input": {

 "Module": "SpeechRecognition",

 "Port": “SourceSpeech_1"

 }

 },

"SourceSpeech_2": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_2"

 },

 "Input": {

 "Module": "SpeechFeatureExtraction",

 "Port": “SourceSpeech_2"

 }

 },

"Speech": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: " Speech"

 },

 "Input": {

 "Module": "",

 "Port": "Speech"

 }

 },

"SpeechFeatures": {

 "Output": {

 "Module": "SpeechFeatureExtraction",

 "Port”: "SpeechFeatures"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "SpeechFeatures"

 }

 },

 "Text_1": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Text_1"

 },

 "Input": {

 "Module": "Translation",

 "Port": "Text_1"

 }

 },

"Text_2": {

 "Output": {

 "Module": "Translation",

 "Port”: "Text_2"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "Text_2"

 }

 }

"Text_3": {

 "Output": {

 "Module": "Translation",

 "Port”: "Text_3"

 },

 "Input": {

 "Module": "",

 "Port": "Text_3"

 }

 }

],

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "UnidirectionalSpeechTranslation",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/
 }

]

}

3 AIM metadata

3.1 SpeechRecognition
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "UST",

 "Version": "2",

https://mpai.community/standards/mpai-mmc/

 "Name": "SpeechRecognition3"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSR3"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements speech recognition function for UST that

converts speech to text of user utterance.",

 "Ports": [

 {

 "Name": "SourceSpeech",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechRecognition3",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.2 Translation

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "UST",

 "Version": "2",

 "Name": "Translation"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYTR"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Translation function.",

 "Ports": [

https://mpai.community/standards/mpai-mmc/

 {

 "Name": "RequestedLanguage",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceText",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

{

 "Name": "Text_3",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "Translation",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.3 Speech Feature Extraction

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "UST",

 "Version": "2",

 "Name": "SpeechFeatureExtraction "

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSFE"

https://mpai.community/standards/mpai-mmc/

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Feature Extraction function.",

 "Ports": [

 {

 "Name": "SourceSpeech_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SpeechFeatures",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechFeatureExtraction",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.4 Speech Synthesis

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "UST",

 "Version": "2",

 "Name": "SpeechSynthesis"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSS"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Synthesis function.",

 "Ports": [

 {

 "Name": "Text_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

https://mpai.community/standards/mpai-mmc/

 "Protocol": ""

 },

 {

 "Name": "SpeechFeatures",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Speech",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechSynthesis",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

https://mpai.community/standards/mpai-mmc/

Annex 7 – AIW and AIM Metadata of MMC-BST

1 ID linearization

Note: Fields that are used to generate automatic IDs may not contain “:” characters.

When one needs to reference them from other contexts, automatic unique IDs for AIWs/AIMs can

be generated with the following formula:
AIM->Implementer_ID:(S:AIM->Standard->Name:AIM->Standard->Version:AIM->Standard->Use_Case:AIM->St

andard->Name|U:AIM->User_Defined->Name):AIM->Version

Examples:
• 00089:(S:(MMC:CWE:2:_MAIN_)):123 // A workflow

• 00089:(S:(MMC:CWE:2:GovernanceAssessment)):345 // A sub-module of a workflow

• 00089:(U:PCA_based_analysis):75

2 AIW metadata for BST
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store, e.g., 00089

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "BST",

 "Version": "1",

 "Name": "_MAIN_" // Always _MAIN_ for workflows

 } | "User_Defined": { // Provided by implementer

 "Name": "Bidirectional Speech Translation"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main" // Defined by MPAI, selected by implementer

 "Description": "This AIW implements BST application of MPAI-MMC",

 "Ports": [

 {

 "Name": "RequestedLanguage",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SourceText_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceText_2",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SourceSpeech_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceSpeech_2",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceSpeech_3",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceSpeech_4",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "TranslationResult_3",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_4",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Translated_Speech_1",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Translated_Speech_2",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 }

]

 "AIMs": [

 // Automatic ID for module 1

 "SpeechRecogniton": "@00089:(S:(MMC:BST:2:SpeechRecogniton)):345"

 // Automatic ID for module 2

 "Translation": "@00089:(S:(MMC:BST:2:Translation)):12",

 // Automatic ID for module 3

 "SpeechFeatureExtraction":

"@00089:(S:(MMC:BST:2:LanguageUnderstanding)):333",

 // Automatic ID for module 4

 “SpeechSynthesis": "@00089:(S:(MMC:BST:2:SpeechSynthesis)):27"

],

 "Topology": [

 " RequestedLanguage": {

 "Output": {

 "Module": "",

 "Port”: " RequestedLanguage "

 },

 "Input": {

 "Module": "Translation",

 "Port": " RequestedLanguage"

 }

 },

"SourceText_1": {

 "Output": {

 "Module": "",

 "Port”: "SourceText_1"

 },

 "Input": {

 "Module": "Translation",

 "Port": "SourceText_1"

 }

 },

"SourceText_2": {

 "Output": {

 "Module": "",

 "Port”: "SourceText_2"

 },

 "Input": {

 "Module": "Translation",

 "Port": "SourceText_2"

 }

 },

 "SourceSpeech_1": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_1"

 },

 "Input": {

 "Module": "SpeechRecognition",

 "Port": “SourceSpeech_1"

 }

 },

"SourceSpeech_2": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_2"

 },

 "Input": {

 "Module": "SpeechRecognition",

 "Port": “SourceSpeech_2"

 }

 },

"SourceSpeech_3": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_3"

 },

 "Input": {

 "Module": "SpeechFeatureExtraction",

 "Port": “SourceSpeech_3"

 }

 },

"SourceSpeech_4": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_4"

 },

 "Input": {

 "Module": "SpeechFeatureExtraction",

 "Port": “SourceSpeech_4"

 }

 },

"TranslatedSpeech_1": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: "TranslatedSpeech_1"

 },

 "Input": {

 "Module": "",

 "Port": "TranslatedSpeech_1"

 }

},

"TranslatedSpeech_2": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: "TranslatedSpeech_2"

 },

 "Input": {

 "Module": "",

 "Port": "TranslatedSpeech_2"

 }

 },

"SpeechFeatures_1": {

 "Output": {

 "Module": "SpeechFeatureExtraction",

 "Port”: " SpeechFeatures_1"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "SpeechFeatures_1"

 }

 },

"SpeechFeatures_2": {

 "Output": {

 "Module": "SpeechFeatureExtraction",

 "Port”: "SpeechFeatures_2"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "SpeechFeatures_2"

 }

 },

 "Text_1": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Text_1"

 },

 "Input": {

 "Module": "Translation",

 "Port": "Text_1"

 }

 },

"Text_2": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Text_2"

 },

 "Input": {

 "Module": "Translation",

 "Port": "Text_2"

 }

 },

"TranslationResult_1": {

 "Output": {

 "Module": "Translation",

 "Port”: "TranslationResult_1"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "TranslationResult_1"

 }

 },

"TranslationResult_2": {

 "Output": {

 "Module": "Translation",

 "Port”: "TranslationResult_2"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "TranslationResult_2"

 }

 },

"TranslationResult_3": {

 "Output": {

 "Module": "Translation",

 "Port”: "TranslationResult_3"

 },

 "Input": {

 "Module": "",

 "Port": "TranslationResult_3"

 }

 },,

"TranslationResult_4": {

 "Output": {

 "Module": "Translation",

 "Port”: "TranslationResult_4"

 },

 "Input": {

 "Module": "",

 "Port": "TranslationResult_4"

 }

 }

],

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "BidirectionalSpeechTranslation",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/
 }

]

}

3 AIM metadata

3.1 SpeechRecognition
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "BST",

 "Version": "2",

 "Name": "SpeechRecognition3"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSR4"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements speech recognition function for BST that

converts speech to text of user utterance.",

 "Ports": [

 {

 "Name": "SourceSpeech_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceSpeech_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

https://mpai.community/standards/mpai-mmc/

 "Protocol": ""

 }

 {

 "Name": "Text_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechRecognition4",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.2 Translation

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "UST",

 "Version": "2",

 "Name": "Translation"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYTR"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Translation function.",

 "Ports": [

 {

 "Name": "RequestedLanguage",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceText_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

https://mpai.community/standards/mpai-mmc/

 },

{

 "Name": "SourceText_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "TranslationResult_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_3",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_4",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "Translation",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.3 Speech Feature Extraction

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "BST",

 "Version": "2",

 "Name": "SpeechFeatureExtraction "

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSFE"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Feature Extraction function.",

 "Ports": [

 {

 "Name": "SourceSpeech_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceSpeech_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SpeechFeatures_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SpeechFeatures_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechFeatureExtraction",

 "Language": "C",

 "Architecture": "",

https://mpai.community/standards/mpai-mmc/

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.4 Speech Synthesis

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "UST",

 "Version": "2",

 "Name": "SpeechSynthesis"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSS"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Synthesis function.",

 "Ports": [

 {

 "Name": "TranslationResult_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SpeechFeatures_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SpeechFeatures_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslatedSpeech_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslatedSpeech_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 }

],

https://mpai.community/standards/mpai-mmc/

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechSynthesis",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

https://mpai.community/standards/mpai-mmc/

Annex 8 – AIW and AIM Metadata of MMC-OMT

1 ID linearization

Note: Fields that are used to generate automatic IDs may not contain “:” characters.

When one needs to reference them from other contexts, automatic unique IDs for AIWs/AIMs can

be generated with the following formula:
AIM->Implementer_ID:(S:AIM->Standard->Name:AIM->Standard->Version:AIM->Standard->Use_Case:AIM->St

andard->Name|U:AIM->User_Defined->Name):AIM->Version

Examples:
• 00089:(S:(MMC:CWE:2:_MAIN_)):123 // A workflow

• 00089:(S:(MMC:CWE:2:GovernanceAssessment)):345 // A sub-module of a workflow

• 00089:(U:PCA_based_analysis):75

2 AIW metadata for OMT
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store, e.g., 00089

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "OMT",

 "Version": "1",

 "Name": "_MAIN_" // Always _MAIN_ for workflows

 } | "User_Defined": { // Provided by implementer

 "Name": "OneToManySpeechTranslation"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main" // Defined by MPAI, selected by implementer

 "Description": "This AIW implements OMT application of MPAI-MMC",

 "Ports": [

 {

 "Name": "RequestedLanguage",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SourceText",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SourceSpeech_1",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceSpeech_2",

 "Direction": "InputOutput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_3",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_N",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Speech_1",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Speech_2",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Speech_N",

 "Direction": "OutputInput",

 "Record_Type": "byte[] bitstream_t",

 "Type": "Software",

 "Protocol": ""

 }

]

 "AIMs": [

 // Automatic ID for module 1

 "SpeechRecogniton": "@00089:(S:(MMC:OMT:2:SpeechRecogniton)):345"

 // Automatic ID for module 2

 "Translation": "@00089:(S:(MMC:OMT:2:Translation)):12",

 // Automatic ID for module 3

 "SpeechFeatureExtraction":

"@00089:(S:(MMC:UST:2:LanguageUnderstanding)):333",

 // Automatic ID for module 4

 “SpeechSynthesis": "@00089:(S:(MMC:OMT:2:SpeechSynthesis)):27"

],

 "Topology": [

 "RequestedLanguage": {

 "Output": {

 "Module": "",

 "Port”: "RequestedLanguage"

 },

 "Input": {

 "Module": "Translation",

 "Port": "RequestedLanguage"

 }

 },

"SourceText": {

 "Output": {

 "Module": "",

 "Port”: "SourceText"

 },

 "Input": {

 "Module": "Translation",

 "Port": "SourceText "

 }

 },

 "SourceSpeech_1": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_1"

 },

 "Input": {

 "Module": "SpeechRecognition",

 "Port": “SourceSpeech_1"

 }

 },

"SourceSpeech_2": {

 "Output": {

 "Module": "",

 "Port”: “SourceSpeech_2"

 },

 "Input": {

 "Module": "SpeechFeatureExtraction",

 "Port": “SourceSpeech_2"

 }

 },

"Speech_1": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: " Speech_1"

 },

 "Input": {

 "Module": "",

 "Port": "Speech_1"

 }

 },

"Speech_2": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: " Speech_2"

 },

 "Input": {

 "Module": "",

 "Port": "Speech_2"

 }

 },

"Speech_N": {

 "Output": {

 "Module": "SpeechSynthesis",

 "Port”: " Speech_N"

 },

 "Input": {

 "Module": "",

 "Port": "Speech_N"

 }

 },

"SpeechFeatures": {

 "Output": {

 "Module": "SpeechFeatureExtraction",

 "Port”: "SpeechFeatures"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "SpeechFeatures"

 }

 },

 "Text_1": {

 "Output": {

 "Module": "SpeechRecognition",

 "Port”: "Text_1"

 },

 "Input": {

 "Module": "Translation",

 "Port": "Text_1"

 }

 },

"TranslationResult_1": {

 "Output": {

 "Module": "Translation",

 "Port”: "TranslationResult_1"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "TranslationResult_1"

 }

 }

"TranslationResult_2": {

 "Output": {

 "Module": "Translation",

 "Port”: "TranslationResult_2"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "TranslationResult_2"

 }

 }

"TranslationResult_N": {

 "Output": {

 "Module": "Translation",

 "Port”: "TranslationResult_N"

 },

 "Input": {

 "Module": "SpeechSynthesis",

 "Port": "TranslationResult_N"

 }

 }

"Text_2": {

 "Output": {

 "Module": "Translation",

 "Port”: "Text_2"

 },

 "Input": {

 "Module": "",

 "Port": "Text_2"

 }

 }

"Text_3": {

 "Output": {

 "Module": "Translation",

 "Port”: "Text_3"

 },

 "Input": {

 "Module": "",

 "Port": "Text_3"

 }

 }

"Text_N": {

 "Output": {

 "Module": "Translation",

 "Port”: "Text_N"

 },

 "Input": {

 "Module": "",

 "Port": "Text_N"

 }

 }

],

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "OneToManySpeechTranslation",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/
 }

]

https://mpai.community/standards/mpai-mmc/

}

3 AIM metadata

3.1 SpeechRecognition
"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "OMT",

 "Version": "2",

 "Name": "SpeechRecognition5"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSR5"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements speech recognition function for OMT that

converts speech to text of user utterance.",

 "Ports": [

 {

 "Name": "SourceSpeech",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "Text_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[]

frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechRecognition5",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.2 Translation

"AIM": {

https://mpai.community/standards/mpai-mmc/

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "OMT",

 "Version": "2",

 "Name": "Translation"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYTR"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Translation function.",

 "Ports": [

 {

 "Name": "RequestedLanguage",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "SourceText",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "TranslationResult_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_N",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "Translation",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

3.3 Speech Feature Extraction

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "OMT",

 "Version": "2",

 "Name": "SpeechFeatureExtraction "

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSFE"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Feature Extraction function for OMT.",

 "Ports": [

 {

 "Name": "SourceSpeech_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SpeechFeatures",

 "Direction": "OutputInput",

 "Record_Type": "{int32 frameNumber; int16 x; int16 y; byte[] frame}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechFeatureExtraction",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

https://mpai.community/standards/mpai-mmc/
https://mpai.community/standards/mpai-mmc/

]

}

3.4 Speech Synthesis

"AIM": {

 "Implementer_ID": ###, // Number provided by MPAI store

 "Standard": { // Defined by MPAI, selected by implementer

 "Name": "MMC",

 "Use_Case": "OMT",

 "Version": "2",

 "Name": "SpeechSynthesis"

 } | "User_Defined": { // Provided by implementer

 "Name": "MYSS"

 },

 "Version": "345", // Provided by implementer

 "Profile": "Main", // Defined by MPAI, selected by implementer

 "Description": "This AIM implements Speech Synthesis function for OMT.",

 "Ports": [

 {

 "Name": "TranslationResult_1",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_2",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "TranslationResult_N",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

 {

 "Name": "SpeechFeatures",

 "Direction": "InputOutput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Text_N",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Speech_1",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Speech_2",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 },

{

 "Name": "Speech_N",

 "Direction": "OutputInput",

 "Record_Type": "{int32 modelSize ; byte[] model}",

 "Type": "Software",

 "Protocol": ""

 }

],

 "AIMs": [], // Does not depend on other AIMs

 "Topology": [], // Does not depend on other AIMs

 "Authentication": "ENC.V.?",

 "TimeBase": "PROT.V.?",

 "ResourcePolicies": [

 "CPU": ?

],

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

 {

 "Type": "Source",

 "Function_Name": "SpeechSynthesis",

 "Language": "C",

 "Architecture": "",

 "OS": "",

 "OS_Version": "",

 "ID": ""

 }

],

 "Documentation": [

 { "Type": "tutorial",

 "URI": https://mpai.community/standards/mpai-mmc/

 }

]

}

https://mpai.community/standards/mpai-mmc/

