

Moving Picture, Audio and Data Coding

by Artificial Intelligence

www.mpai.community

MPAI Technical Specification

AI Framework

MPAI-AIF

WD 0.12

WARNING

Use of the technologies described in this Technical Specification may infringe patents, copyrights

or intellectual property rights of MPAI Members or non-members.

MPAI and its Members accept no responsibility whatsoever for damages or liability, direct or

consequential, which may result from use of this Technical Specification.

Readers are invited to review Annex 2 – Notices and Disclaimers.

© Copyright MPAI 2021. All rights reserved

AI Framework

Version 1
1 Introduction (Informative) ... 4
2 Scope (Normative) .. 5
3 Terms and definitions (Normative) ... 5
4 References ... 6

4.1 Normative references .. 6
4.2 Informative references .. 7

5 Architecture of the AI Framework (Normative) ... 7
5.1 AI Framework Components ... 7
5.2 AI Framework Features .. 7

5.3 AI Framework Implementations ... 8
5.4 AIMs ... 8

5.4.1 Implementation types .. 8

5.4.2 Combination .. 9
5.4.3 Hardware-software compatibility .. 9
5.4.4 Actual implementations ... 9

5.4.4.1 Hardware .. 9
5.4.4.2 Software ... 10

6 Metadata .. 10

6.1 Communication channels and their data types ... 10
6.1.1 Type system ... 10

6.1.2 Mapping the type to buffer contents ... 12
6.2 AIF Metadata .. 12

6.3 AIW/AIM Metadata ... 13
7 API .. 14

7.1 General .. 14
7.2 Conventions .. 14

7.2.1 API types ... 14

7.2.2 Error codes .. 15

7.3 Controller API for MPAI Store .. 15
7.3.1 Get file archive .. 15

7.3.1.1 MPAI_AIF_Store_GetFile ... 15
7.4 Controller API for User Agent ... 15

7.4.1 General .. 15
7.4.1.1 MPAI_AIF_USER_Initialize ... 16
7.4.1.2 MPAI_AIF_USER_Destroy .. 16

7.4.1.3 MPAI_AIF_USER _Register ... 16
7.4.1.4 MPAI_AIF_USER _Deregister ... 16

7.4.2 Start/Pause/Resume/Stop Messages to other AIMs .. 16
7.4.2.1 MPAI_AIF_USER_Start ... 16
7.4.2.2 MPAI_AIF_USER_Pause .. 16

7.4.2.3 MPAI_AIF_USER_Resume .. 16
7.4.2.4 MPAI_AIF_USER_Stop .. 16

7.4.3 Inquire about state of AIWs and AIMs ... 17
7.4.3.1 MPAI_AIF_USER_GetStatus ... 17

7.4.4 Management of Global and Internal Storage for AIWs .. 17
7.4.4.1 MPAI_AIF_USER_GStorage_Init .. 17
7.4.4.2 MPAI_AIF_USER_IStorage_Init .. 17

7.4.5 Communication management .. 17
7.4.5.1 MPAI _USER_Comm_Init .. 17

7.4.5.2 MPAI _USER_Comm_Destroy ... 17
7.4.5.3 MPAI USER_Comm_Event .. 17

7.4.6 Resorce allocation management .. 17
7.5 Controller API for AIMs .. 17

7.5.1 General .. 17

7.5.2 Execution environment ... 18
7.5.3 Initialization/Deinitialization .. 18

7.5.3.1 MPAI_AIF_Initialize ... 18
7.5.3.2 MPAI_AIF_Destroy .. 18

7.5.4 Register/deregister AIMs to the Controller ... 18

7.5.4.1 MPAI_AIF_AIM_Register .. 18
7.5.4.2 MPAI_AIF_AIM_Deregister ... 18
7.5.4.3 MPAI_AIF_AIM_Use_Local_ByCode ... 18

7.5.4.4 MPAI_AIF_AIM_Use_Local_ByID ... 18
7.5.4.5 MPAI_AIF_AIM_Use_Remote ... 18

7.5.5 Start/Pause/Resume/Stop Messages to other AIMs .. 19
7.5.5.1 MPAI_AIF_AIM_Start .. 19

7.5.5.2 MPAI_AIF_AIM_Pause .. 19
7.5.5.3 MPAI_AIF_AIM_Resume .. 19

7.5.5.4 MPAI_AIF_AIM_Stop .. 19
7.5.5.5 MPAI_AIF_AIM_EventHandler ... 19

7.5.6 Registering AIM Ports .. 19

7.5.6.1 MPAI_AIF_Port_InputOutput_Create .. 19

7.5.6.2 MPAI_AIF_Port_InputOutput_Destroy .. 19
7.5.6.3 MPAI_AIF_Port_OutputInput_Create .. 20
7.5.6.4 MPAI_AIF_Port_OutputInput_Destroy .. 20

7.5.6.5 MPAI_AIF_Port_InputOutput_Open .. 20
7.5.6.6 MPAI_AIF_Port_InputOutput_Close .. 20

7.5.6.7 MPAI_AIF_Port_OutputInput_Open .. 20
7.5.6.8 MPAI_AIF_Port_OutputInput_Close .. 20

7.5.7 Register Connections between AIMs .. 20
7.5.7.1 MPAI_AIF_Channel_Create ... 20
7.5.7.2 MPAI_AIF_Channel_Destroy ... 20

7.5.8 Using Ports .. 21
7.5.8.1 MPAI_AIF_Port_Output_Read ... 21
7.5.8.2 MPAI_AIF_Port_Input_Write ... 21
7.5.8.3 MPAI_AIF_Port_Reset .. 21

7.5.8.4 MPAI_AIF_Port_CountPendingMessages .. 21
7.5.8.5 MPAI_AIF_Port_Probe ... 21
7.5.8.6 MPAI_AIF_Port_Select ... 21

7.5.9 Operations on messages .. 21
7.5.9.1 MPAI_AIF_Message_Copy .. 21

7.5.9.2 MPAI_AIF_Message_Delete ... 22
7.5.9.3 MPAI_AIF_Message_GetBuffer ... 22
7.5.9.4 MPAI_AIF_Message_GetBufferLength .. 22

7.5.9.5 MPAI_AIF_Message_Parse .. 22
7.5.9.6 MPAI_AIF_Message_Parse_Get_StructField ... 22
7.5.9.7 MPAI_AIF_Message_Parse_Get_VariantType .. 22

7.5.9.8 MPAI_AIF_Message_Parse_Get_ArrayLength .. 22
7.5.9.9 MPAI_AIF_Message_Parse_Get_ArrayField ... 23

7.5.9.10 MPAI_AIF_Message_Parse_Delete .. 23
7.5.10 Functions specific to machine learning ... 23

7.5.10.1 Support for model update ... 23
8 Implementation Guidelines (Informative) ... 23
9 Examples (Informative) ... 23

9.1 AIF Implementations .. 23
9.1.1 Resource-constrained implementation .. 23
9.1.2 Non-resource-constrained implementation ... 24

9.2 Examples of types ... 24
9.3 Examples of Metadata .. 24

9.3.1 AIF Metadata ... 24
9.3.2 AIW Metadata ... 25
9.3.3 AIM Metadata ... 28

9.3.3.1 SpeechRecognition .. 28
9.3.3.2 Translation ... 28
9.3.3.3 Speech Feature Extraction ... 29
9.3.3.4 Speech Synthesis .. 30

Annex 1 – MPAI-wide terms and definitions (Normative) ... 32
Annex 2 - Notices and Disclaimers Concerning MPAI Standards (Informative) 35

Annex 3 – The Governance of the MPAI Ecosystem (Informative) ... 37

1 Introduction (Informative)

Moving Picture, Audio and Data Coding by Artificial Intelligence (MPAI) is an international

Standards Developing Organisation with the mission to develop AI-enabled data coding standards.

Research has shown that data coding with AI-based technologies is generally more efficient than

with existing technologies. Compression and feature-based description are notable examples of

coding. MPAI Application Standards enable the development of AI-based products, applications

and services.

In the following, Terms beginning with a capital letter are defined in Table 1 if they are specific

to this Standard and in Table 4 if they are common to all MPAI Standards.

Figure 1 depicts the Reference Model of this AI Framework (AIF) Standard (MPAI-AIF) that

provides the foundation on which Implementations of MPAI Application Standards operate.

Figure 1 – The AI Framework (AIF) Reference Model and its Components

http://mpai.community/
http://mpai.community/

An AIF Implementation allows execution of AI Workflows (AIW), composed by basic processing

elements called AI Modules (AIM).

MPAI Application Standards normatively specify Semantics and Format of the input and output

data and the Function of the AIW and the AIMs, and the Connections between and among the

AIMs of an AIW.

In particular, an AIM is defined by its Function and Data, but not by its internal architecture, which

may be based on AI or data processing, and implemented in software, hardware or hybrid software

and hardware technologies.

MPAI defines Interoperability as the ability to replace an AIW or an AIM Implementation with a

functionally equivalent Implementation. MPAI also defines 3 Interoperability Levels of an AIW

that executes an AIW. The AIW may be:

1. Proprietary and composed of AIMs with proprietary functions using any proprietary data

Format (Level 1).

2. Composed of AIMs having all their Functions, Formats and Connections specified by an MPAI

Application Standard (Level 2).

3. Composed of AIMs that have the characteristics of point 2. above and certified by an MPAI-

appointed Assessor to possess the attributes of Reliability, Robustness, Replicability and

Fairness – collectively called Performance (Level 3).

MPAI is the root of trust of the MPAI Ecosystem [1] offering Users access to the promised benefits

of AI with a guarantee of increased transparency, trust and reliability as the Interoperability Level

of an Implementation moves from 1 to 3. Additional information is provided by Annex 3.

2 Scope (Normative)

The MPAI AI Framework (MPAI-AIF) Standard specifies architecture, interfaces, protocols and

APIs of an AI Framework (AIF) capable of executing AI-based products, services and applications.

MPAI-AIF has the following main features:

• Is component-based.

• Defines the interfaces amongst it Components.

• Is secure as the components operate in a trusted zone.

• Supports mixed hardware-software implementations.

• Supports distributed and local execution environments.

• Supports Machine Learning.

• Supports operation of AIFs in proximity.

The current version of MPAI-AIF has been developed by the MPAI AI Framework Development

Committee (AIF-DC). Future Versions may revise and/or extend the Scope of the Standard.

3 Terms and definitions (Normative)

The Terms used in this standard whose first letter is capital are defined in Table 1. The Terms of

MPAI-wide applicability are defined in Table 4.

Table 1 – MPAI-AIF Terms

Term Definition

Access Static or slowly changing data that are required by an application such as

domain knowledge data, data models, etc.

AIF Metadata The data set describing the capabilities of an AIF set by the AIF Implem-

enter.

AIM Metadata The data set describing the capabilities of an AIM set by the AIM Implem-

enter.

AI Module (AIM) A data processing element receiving AIM-specific inputs and producing

AIM-specific outputs according to its Function. An AIM may be an

aggregation of AIMs.

AI Workflow

(AIW)

A structured aggregation of AIMs implementing a Use Case receiving

AIM-specific inputs and producing AIM-specific outputs according to its

Function.

Channel A physical or logical connection between an output Port of an AIM and

an input Port of an AIM. The term “connection” is also used as

synonymous.

Communication The infrastructure that implements message passing between AIMs.

Component One of the (AIF elements: Access, AI Module, AI Workflow, Commun-

ication, Controller, Internal Storage, Global Storage, MPAI Store, and

User Agent.

Controller A Component that manages and controls the AIMs in the AIWs, so that

they execute in the correct order and at the time when they are needed.

Data Type An instance of the Data Types defined by 6.1.1.

Device A hardware and/or software entity running at least one instance of an AIF.

Event An occurrence acted on by an Implementation.

Global Storage A Component to store data shared among AIMs.

Internal Storage A Component to store data of individual AIMs.

Knowledge Base Structured and/or unstructured information made accessible to AIMs via

MPAI-specified interfaces.

Message A sequence of Records.

MPAI Store The repository of Implementations.

Port A physical or logical communication interface of an AIM.

Record A data structure with a specified structure.

Resource policy The set of permissions under what conditions this applies specific actions

may be applied.

Status The set of parameter characterising a Component.

Time Base The protocol specifying how Components can access timing information

Topology The set of Channels connecting AIMs in an AIW.

User Agent The Component interfacing the user with an AIF through the Controller

AIW Metadata The data set describing the capabilities of an AIW set by the AIW Im-

plementer.

4 References

4.1 Normative references

MPAI-AIF normatively references the following documents:

1. Technical Specification: The Governance of the MPAI Ecosystem V1.

2. GIT protocol, https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols.

3. ZIP format, https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT.

4. Date and Time in the Internet: Timestamps; IETF RFC 3339; July 2002.

5. Uniform Resource Identifiers (URI): Generic Syntax, IETF RFC 2396, August 1998.

6. The JavaScript Object Notation (JSON) Data Interchange Format;

https://datatracker.ietf.org/doc/html/rfc8259; IETF rfc8259; December 2017

4.2 Informative references

7. Message Passing Interface (MPI), https://www.mcs.anl.gov/research/projects/mpi/

5 Architecture of the AI Framework (Normative)

5.1 AI Framework Components

MPAI-AIF normatively specifies the Components of Figure 1 whose functions are:

1. Access: provides access to static or slowly changing data that are required by an application

such as domain knowledge data, data models, etc.

2. AI Module (AIM): a data processing element receiving AIM-specific Inputs and producing

AIM-specific Outputs according to according to its Function. An AIM may be an aggregation

of AIMs.

3. AI Workflow (AIW): an organised aggregation of AIMs implementing a Use Case receiving

AIM-specific Inputs and producing AIM-specific Outputs according to its Function.

4. Communication: connects the Components of an AIF.

5. Controller:

a. Provides basic functionalities such as scheduling, inter AIMs communication, access

to all the AIF components such as Internal and Global Storage.

b. Activates/suspends/resumes/deactivates AIWs or AIMs according to the user’s or other

inputs

c. Supports complex application scenarios by balancing load and resources.

d. Exposes three APIs:

i. AIM API through which modules can communicate with it (register them-

selves, communicate and access the rest of the AIF environment)

ii. User API through which the user or other Controllers can perform high-level

tasks (e.g., switch the Controller on and off, give inputs to the AIW through the

Controller).

iii. MPAI Store API to enable communication between the AIF and the Store.

e. May run one or more AIWs.

6. Global Storage: stores data shared by AIMs.

7. Internal Storage: stores data of the individual AIMs.

8. MPAI Store: stores Implementations for users to download.

9. User Agent: The Component interfacing the user with an AIF through the Controller

5.2 AI Framework Features

General features of the AI Framework are:

1. Messages are of two types: High-Priority Messages are expressed as up to 16 bit integers.

Normal-Priority Messages are expressed as Types defined by this Standard. Messages may be

communicated through Channels or Events.

2. Communication needs not be persistent and AIMs may be hot-plugged or dynamically

disconnected.

3. A Channel is unicast.

4. Controller may run on a different computing platform than the AIW.

5. The AIMs of a AIW may run on different computing platforms, e.g., in the cloud or on swarms

of drones.

6. Appropriate API Profiles allow Implementation on different computing platforms and different

programming languages.

7. The Controller will always be present even if the AIF is a lightweight Implementation. The

Controller acts as a resource manager, according to instructions given by the User.

8. Modules may be hot-pluggable and register themselves on the fly. However, modules are

executed:

a. Locally, i.e., they encapsulate hardware physically accessible to the Controller.

b. Elsewhere and encapsulate communication with a remote Controller.

9. When different Controllers, each one running on a different agent (“swarm element”), interact

with one another, controllers cooperate in one of the two following ways:

a. A Controller runs in local device (e.g., a traffic light) communicating with the swarm

elements. The Controllers of the swarm elements register as communication AIMs with

the local device whose Controller can feed them with input, thus controlling them.

Control is implemented as internal logic to the AIW run by each swarm elements in

response to information or signals sent by the local device seen by the Controllers of

the swarm elements as an encapsulated AIM.

b. There is no Controller and swarm elements in range register with all other swarm

elements as a communication AIM. Each Controller will have to react to signals and

information coming from as many AIMs as the swarm elements.

5.3 AI Framework Implementations

MPAI-AIF enables a wide variety of Implementations:

1. AIF Implementations may be tailored to different execution environments, e.g., High-

Performance Computing systems or resource-constrained computing boards. For instance, the

Controller might be a process on a HPC system or a library function on a computing board.

However, the API through which the AIMs and AIWs are implemented are common.

2. The API may have different MPAI-defined profiles and, depending on the hardware and

resources available, only some of them might be offered by a specific AIF implementation.

Interoperability between AIMs, irrespective of whether they are implemented in hardware or

in software, is ensured by the way communication between AIM Ports is defined.

3. AIMs may be Implemented in hardware, software and mixed-hardware and software.

4. MPAI-AIF specifies implementation-independent (i.e., hardware, software and hybrid) ways

to communicate Messages between AIMs:

a. Generation and management of Events.

b. Use of Ports and Channels ensuring that compatible AIM Ports may be connected

together irrespective of the AIMs’ implementation technology.

5.4 AIMs

5.4.1 Implementation types

This section defines how HW and SW AIMs can communicate. AIMs can be implemented in

either in HW or SW keeing the same interfaces.

Although AIMs communicate through the same API irrespective of whether they are implemented

in HW or SW, there might be constraints imposed on the specific values of certain API parameters

depending on the nature of the AIM. Different profiles may have different constraints. One

example is that of Events (easy to accommodate in SW but less so in HW); and another is persistent

connections (easy to make in HW, less so in SW).

While SW-SW and HW-HW connections are homogeneous, a HW-SW mixed scenario is inher-

ently heterogeneous and requires the specification of additional communication protocols, which

are used to wrap the HW part and connect it to SW.

Examples of supported architectures are:

• CPU-based devices running an operating system. They are presented as software blocks.

• Memory-mapped devices (FPGAs, GPUs, TPUs) which are presented as accelerators. They

are presented as software blocks.

• Cloud-based frameworks. They are presented as software blocks.

• Naked hardware devices (i.e. IP in FPGAs) that communicate through hardware Ports. They

are presented as (non-encapsulated) hardware blocks.

• Encapsulated blocks of a hardware design (i.e. IP in FPGAs) that communicate through a

memory-mapped bus. In this case, the low-level communication protocol used by the Ports

specified in the metadata must also be specified. They are presented as software blocks.

It is always possible to encapsulate the hardware block into a software block. To achieve that,

suitable hardware and associated low-level protocols shall be added to the communication chan-

nels of the non-encapsulated hardware block, in order to make the block accessible from software.

5.4.2 Combination

MPAI-AIF supports the following ways of combining AIMs :

• Software AIMs connected to other software AIMs resulting in a software AIM

• Non-encapsulated hardware blocks connected to other non-encapsulated hardware blocks,

resulting in a larger, non-encapsulated hardware AIM

• Encapsulated hardware blocks connected to either other encapsulated hardware blocks or

other software blocks, resulting in a larger software AIM.

• Connection between a non-encapsulated hardware AIM and a software AIM is not supported

as in such a case direct communication between the AIMs cannot be defined in any meaningful

way.

5.4.3 Hardware-software compatibility

The possibility to always connect communication channels with one another shall be ensured,

irrespective of whether the channel has been implemented in software or hardware. This results in

the following matrix of requirements:

 Hardware Software

Hardware In structures, each named type is trans-

mitted as a separate channel. Vector types

are implemented as two channels, one

transmitting the size and the second

transmitting the data

Data structures are turned into a default

strategy to fill out memory buffers,

obtained by recursively traversing the

definition (breadth-first). Sub-fields are

written down according to their type, in

little-endian order

Software Data structures are turned into a default

strategy to fill out memory buffers, ob-

tained by recursively traversing the defin-

ition (breadth-first). Sub-fields are writ-

ten down according to their type, in little-

endian order

Data structures are turned into a default

strategy to fill out memory buffers,

obtained by recursively traversing the

definition (breadth-first). Sub-fields are

written down according to their type, in

little-endian order

Both software-hardware and hardware-software cases require the specification of a memory-

mapped communication protocol in order to allow communication between architectures.

5.4.4 Actual implementations

5.4.4.1 Hardware

Code implementations in hardware are defined as stand-alone objects. Metadata ensures that

hardware blocks can be directly connected to other hardware/software blocks, provided the

specification platforms for the two blocks are compatible. Hence, specifications for hardware

components only rely upon one or more implementations in code (source or binary) and their

associated metadata.

5.4.4.2 Software

Software implementations must rely on a support library provided by the AIM Implementers in

order to make sure that communication between the different constituent AIMs, and with other

AIMs outside the block, is performed correctly. The support library can have different

implementations, each one specific to one platform/operating system/programming language.

In addition, AIM Implementations must contain a number of well-defined steps so as to ensure

that the controller is correctly initialised and remains in a consistent internal state, i.e.:

1. A code segment registering the different AIMs used by the AIW. The AIMs can be defined as:

a. Source code, which can be local or remote

b. Local instances of AIM Implementations that have been previously registered with the

MPAI Store. Such AIMs are software functions or hardware designs executed on a

local machine/HPC cluster/MPC machine.

c. Remote instances that have been previously registered with the MPAI Store. They are

AIMs executed on a remote machine.

d. They are transparently executed by a remote Controller, and the only relevant point

about them is their communication ports and protocols. The Controller automatically

takes care of selecting an implementation of the AIM which is suitable for the hosting

machine.

e. Registering an AIM with the Controller results in it retrieving a suitable implemen-

tation function for the AIM, either from local code or from the MPAI Store.

2. Code starting/stopping the AIMs.

3. Code registering the input/output Ports for the AIM.

4. Code instantiating unicast channels between AIM Ports belonging to AIMs used by the

module, and connections from/to the AIM being defined to/from external AIMs.

5. Registering Ports and connecting them may result in a number of steps performed by the

Controller – some suitable data structure (including, for instance, data buffers) will be allocated

for each port or channel, in order to support the functions specified by the communication API.

6. It is also possible to explicitly write/read data to/from, any of the existing Ports.

7. In general, arbitrary functionality can be added to a software AIM. For instance, depending on

the AIM Function, one would typically link libraries that allow a GPU or FPGA to be managed

through DMA, or link and use high-level libraries (such as TensorFlow) that implement AI-

related functionality.

8. The API implementation depends on the architecture the Implementation is designed for.

6 Metadata

Metadata specifies static properties pertaining to the interaction between the AIW and the

Controller. The configuration is specified in JSON as specified in the following sections.

6.1 Communication channels and their data types

6.1.1 Type system

The data interchange happening through buffers involves the exchange of structured data.

Data types for the record exchanged through Ports and communication Channels are defined by

the following BNF specification. Words in bold typeface are keywords; capitalised words such as

NAME are tokens.

fifo_type :=
 | /* The empty type */
 | base_type NAME
recursive_type :=
 | recursive_base_type NAME
base_type :=
 | toplevel_base_type
 | recursive_base_type
 | (base_type)
toplevel_base_type :=
 | array_type
 | toplevel_struct_type
 | toplevel_variant_type
array_type :=
 | recursive_base_type []
toplevel_struct_type :=
 | { one_or_more_fifo_types_struct }
one_or_more_fifo_types_struct :=
 | fifo_type
 | fifo_type ; one_or_more_fifo_types_struct
toplevel_variant_type :=
 | { one_or_more_fifo_types_variant }
one_or_more_fifo_types_variant :=
 | fifo_type | fifo_type
 | fifo_type | one_or_more_fifo_types_variant
recursive_base_type :=
 | signed_type
 | unsigned_type
 | float_type
 | struct_type
 | variant_type
signed_type :=
 | int8
 | int16
 | int32
 | int64
unsigned_type :=
 | uint8 | byte
 | uint16
 | uint32
 | uint64
float_type :=
 | float32
 | float64
struct_type :=
 | { one_or_more_recursive_types_struct }
one_or_more_recursive_types_struct :=
 | recursive_type
 | recursive_type ; one_or_more_recursive_types_struct
variant_type :=
 | { one_or_more_recursive_types_variant }
one_or_more_recursive_types_variant :=
 | recursive_type | recursive_type
 | recursive_type | one_or_more_recursive_types_variant

Valid types for FIFOs are those defined by the production fifo_type.

Note that arrays can only occur at top level, so as to make the offsets for subtypes computable.

Although by using this language it is perfectly possible to specify types having a fixed length, the

general record type written to, or read from, the port will not have a fixed length. However, some

modules (especially those implemented both in software and hardware) might need to keep the

record type simpler.

6.1.2 Mapping the type to buffer contents

From a definition in this language, an automated way of filling and transmitting buffers can be

derived both for hardware and software implementations. In particular, data structures are turned

into low-level memory buffers, filled out by recursively traversing the definition (breadth-first).

Sub-fields are written down according to their type, in little-endian order.

For instance, a definition for transmitting a video frame through a FIFO might be:

{int32 frameNumber; int16 x; int16 y; byte[] frame} frame_t

and the corresponding memory layout would be
[32 bits: frameNumber | 16 bits: x | 16 bits: y | 32 bits: size(frame) | 8*size(frame)

bits: frame].

API functions are provided in order to parse the content of raw memory buffers in a platform- and

implementation-independent fashion (see Subsection 7.5.9).

6.2 AIF Metadata

Table 2 – AIF Metadata

Field name Field syntax Field description M/O

ImplementerID Number Provided by MPAI Store M

Version String Provided by Implementer. Replaced by “*” in

Technical Specifications.

M

Profile Enumeration Defined by MPAI, selected by Implementer M

ResourcePolicies Structure

array

 O

- Name String An entry in the MPAI-specified Ontologies.

- Minimum Structure O

o Memory Integer Memory size in KBytes O

o CPUClass Enumeration Reserved for future definition O

o CPULimit Integer Number of CPUs allocatable O

- Maximum O

o Memory Integer Memory size in KBytes O

o CPUClass Enumeration Reserved for future definition O

o CPULimit Integer Number of CPUs allocatable O

- Request Structure O

o Memory Integer Memory size in KBytes O

o CPUClass Enumeration Reserved for future definition O

o CPULimit Integer Number of CPUs allocatable O

Authentication Enumeration An entry in the MPAI-specified Ontologies. M

TimeBase Structure An entry in the MPAI-specified Ontologies. O

AI Identifiers shall be represented by ImplementerID, Version and Profile fields in JSON format.

6.3 AIW/AIM Metadata

AIM Metadata specifies static, abstract properties pertaining to one or more AIM implementations,

and how the AIM will interact with the Controller. The configuration is specified in JSON, accor-

ding to the following syntax:

Table 3 – AIW/AIM Metadata

Field name Field syntax Field description M/O

ImplementerID Number Provided by MPAI Store M

Standard Structure Data set identifying the standard implemented

by AIM, if the AIM is standard. If absent, the

UserDefined field must be present.

O

- Name String Defined by the standard itself M

- Use_Case Integer Sequential in the order of the standard M

- Version String Defined by the standard itself M

- Profile Enumeration Defined by MPAI, selected by Implementer M

UserDefined Structure Data set identifying an AIM not implementing a

Standard. Mandatory if not an AIM atandard.

O

- Name String Provided by Implementer. M

- Version Number Provided by Implementer. M

AIFAPIProfile Enumeration Defined by MPAI, selected by implementer M

Description String Free text describing the AIM O

Types Structure

array

Defines Channel data types according to 6.1.1 O

Ports Structure

array

Optional. If present, all the fields of the structure

shall be present.

O

- Name String Implementer-defined name M

- Direction Enumeration Valid values: InputOutput or OutputInput M

- Record_Type String Valid values: Channel Data Type defined in the

Types dictionary or a Channel data type defined

according to 6.1.1

M

- Type Enumeration Valid values: Software or Hardware M

- Protocol Enumeration An entry in the MPAI-specified Ontology M

AIMs Structure

array

Each record identifies an AIM according to the

short-hand notation defined in Error! R

eference source not found..

M

Topology Structure

array

Array of Channels connecting one output to one

input port

M

- Output Structure Identifies an AIM Port. M

o AIMName String An AIM Identifier defined in Error! Reference s

ource not found.. An empty string indicates a

Port of the AIM being defined.

M

o PortName String A Port Identifier as defined in the corresponding

field in the AIM.

M

- Input Structure Identifies an AIM Port. M

o AIMName String An AIM Identifier defined in Error! Reference s

ource not found.. An empty string indicates a

Port of the AIM being defined.

M

o PortName String A Port Identifier as defined in the corresponding

field in the AIM.

M

ResourcePolicies Structure

array

 O

- Name String An entry in the MPAI-specified Ontologies.

- Minimum Structure O

o Memory Integer Memory size in KBytes O

o CPUClass Enumeration Reserved for future definition O

o CPULimit Integer Number of CPUs allocatable O

- Maximum O

o Memory Integer Memory size in KBytes O

o CPUClass Enumeration Reserved for future definition O

o CPULimit Integer Number of CPUs allocatable O

- Request Structure O

o Memory Integer Memory size in KBytes O

o CPUClass Enumeration Reserved for future definition O

o CPULimit Integer Number of CPUs allocatable O

Documentation O

- URI String According to [5] O

AIW/AIM Identifiers shall be represented by ImplementerID and Standard or UserDefined fields

in JSON format.

7 API

7.1 General

This section defines and describes a subset of the API of the software support library which is

sufficient to implement the basic functionality of the Standard. More functions might be added in

the future.

7.2 Conventions

For simplicity, the API is written in a C-like fashion. However, the specification should be meant

as a definition for a general programming language.

Note that namespaces for modules, ports and communication channels (strings belonging to which

are indicated in the next sections with names such as module_name, port_name, and channel_name,

respectively) are all independent.

7.2.1 API types

We assume that the implementation defines a number of types, as follows:

message_t, the type of messages being passed through communication ports and channels

parser_t, the type of parsed message datatypes (a.k.a. “the high-level protocol”)

error_t, the type of return codes returned by library functions.

The exact types are opaque, and its exact definition is left to the implementer. The only meaningful

way to operate on library types with defined results is by using library functions.

On the other hand, the type of modules, module_t, is always defined as

typedef error_t *(module_t)()

across all implementations, in order to ensure cross-compatibility.

Types such as void, size_t, char, int are regular C types.

7.2.2 Error codes

The following error codes having type error_t are returned by the library:

Code Semantic value
MPAI_AIF_OK The function returned successfully. It must

always evaluate to 0, so that one can write tests

on errors originating from a function f as
if (f(...)) {
 // Error handler
 ...
}

MPAI_AIF_ERROR A generic error code
MPAI_AIF_MEM_ALLOC Memory allocation error
MPAI_AIF_MODULE_NOT_FOUND The operation requested of a module cannot be

executed since the module has not been found
MPAI_AIF_INIT_ERROR The AIW cannot be initialized
MPAI_AIF_TERM_ERROR The AIW cannot be properly terminated
MPAI_AIF_MODULE_CREATION_FAILED A new module cannot be created
MPAI_AIF_PORT_CREATION_FAILED A new module port cannot be created
MPAI_AIF_CHANNEL_CREATION_FAILED A new channel cannot be created
MPAI_AIF_WRITE_ERROR A generic message writing error
MPAI_AIF_TOO_MANY_PENDING_MESSAGES A message writing operation failed because

there are too many pending messages waiting to

be delivered
MPAI_AIF_PORT_NOT_FOUND One or both ports of a connection has (or have)

been removed
MPAI_AIF_READ_ERROR A generic message reading error
MPAI_AIF_OP_FAILED The requested operation failed

7.3 Controller API for MPAI Store

It is assumed that all the communication between the controller and the MPAI Store occur via

https protocol. Thus the APIs reported refer to the http secure protocol functions (i.e. GET, POST,

etc). The MPAI Store supports the GIT protocol [2]. The MPAI Store offers 3 REST interfaces:

one for accessing the packages, i.e., assembled AIMs and/or AIW in a single file container, the

second one for querying the MPAI Store database and the third one to handle GIT communications.

The controller implements the functions relative to the file retrieval as described in 7.3.5.

7.3.1 Get file archive

Get an archive from the MPAI Store.

7.3.1.1 MPAI_AIF_Store_GetFile

error_t MPAI_AIF_Store_GetFile()

File Format default is tar.gz. Options are tar.gz, tar.bz2, tbz, tbz2, tb2, bz2, tar, and zip. For

example, specifying archive.zip would send an archive in ZIP format [3].

7.4 Controller API for User Agent

7.4.1 General

The functions provided to the user agent are the following:

1. Initialise all the Components of the AIF.

2. Manage Start/Stop/Suspend/Resume.

3. Manages Resource Allocation.

7.4.1.1 MPAI_AIF_USER_Initialize

error_t MPAI_AIF_USER_Initialize()

Make sure that the Controller is properly switched on and initialized.

7.4.1.2 MPAI_AIF_USER_Destroy

error_t MPAI_AIF_USER_Destroy()

Switch off the Controller, after data structures related to running AIWs have been disposed of.

7.4.1.3 MPAI_AIF_USER _Register

error_t
 MPAI_AIF_USER _Register(const char* name, AIM_t pointer_to_function)

Register the AIW with the Controller, with name name and implementation pointer_to_function.

7.4.1.4 MPAI_AIF_USER _Deregister

error_t
 MPAI_AIF_USER _Deregister(const char* name, AIM_t pointer_to_function)

Deregister the AIW with the Controller, with name name and implementation

pointer_to_function.

7.4.2 Start/Pause/Resume/Stop Messages to other AIMs

Note: Errors encountered while transmitting/receiving these Messages are non-recoverable – i.e.,

they terminate the entire AIW. AIMs can communicate with other AIMs and the Controller uses

this API to Start/Pause/Resume/Stop the AIMs.

7.4.2.1 MPAI_AIF_USER_Start

error_t MPAI_AIF_USER_Start(const char* name)

Start the AIM with given name name. If the operation succeeds, it has immediate effect.

7.4.2.2 MPAI_AIF_USER_Pause

error_t MPAI_AIF_USER_Pause(const char* name)

Pause the AIM with given name name. If the operation succeeds, it has immediate effect.

7.4.2.3 MPAI_AIF_USER_Resume

error_t MPAI_AIF_USER_Resume(const char* name)

Resume the AIM with given name name. If the operation succeeds, it has immediate effect.

7.4.2.4 MPAI_AIF_USER_Stop

error_t MPAI_AIF_USER_Stop(const char* name)

Stop the AIM with given name name. If the operation succeeds, it has immediate effect.

7.4.3 Inquire about state of AIWs and AIMs

7.4.3.1 MPAI_AIF_USER_GetStatus

error_t MPAI_AIF_USER_GetStatus(const char* name, char* status)

7.4.4 Management of Global and Internal Storage for AIWs

7.4.4.1 MPAI_AIF_USER_GStorage_Init

error_t MPAI_AIF_USER_GStorage_init(const char* name)

7.4.4.2 MPAI_AIF_USER_IStorage_Init

error_t MPAI_AIF_USER_IStorage_init(const char* name)

7.4.5 Communication management

Communication takes place with Messages that can be communicated via Events or Ports and

Channels. Their actual implementation and signal type depends on the MPAI-AIF implementation

(and hence on the specific platform, operating system and programming language the

implementation is defined for). Events are defined AIF wide while Ports, Channels and Messages

are specific to the AIM and thus part of the AIM API.

7.4.5.1 MPAI _USER_Comm_Init

error_t MPAI_AIF_USER_Comm_init(const char* name)

7.4.5.2 MPAI _USER_Comm_Destroy

error_t MPAI_AIF_USER_Comm_Destroy(const char* name)

7.4.5.3 MPAI USER_Comm_Event

error_t MPAI_AIF_USER_Comm_Event(const char* name_event)

Actual Event handling is left to the AIM.

7.4.6 Resorce allocation management

error_t MPAI_AIF_USER_AIF_Resource_Allocation_init(int MinMem, int MaxMem, int
ReqMem, int MinCPU, int MaxCPU, int ReqCPU)

7.5 Controller API for AIMs

7.5.1 General

The functions executed by a AIW are:

1. Identify AIF, AIW, AIM, Storage, Use Case.

2. Describe the topology and connections of AIMs in the AIW.

3. Describe the Status of AIF.

4. Describe the Time base.

5. Describe the Resource policy.

7.5.2 Execution environment

These API calls allow AIMs to interrogate the Controller about details of the execution

environment (e.g., the MPAI-AIF profile implemented by the API).

7.5.3 Initialization/Deinitialization

7.5.3.1 MPAI_AIF_Initialize

error_t MPAI_AIF_Initialize()

Make sure that the Controller is properly initialized and the AIF-specific data structures are created.

7.5.3.2 MPAI_AIF_Destroy

error_t MPAI_AIF_Destroy()

Controller destroys the AIW.

7.5.4 Register/deregister AIMs to the Controller

7.5.4.1 MPAI_AIF_AIM_Register

error_t
 MPAI_AIF_AIM_Register(const char* name, AIM_t pointer_to_function)

Register the AIM with the Controller, with name name and implementation pointer_to_function.

7.5.4.2 MPAI_AIF_AIM_Deregister

error_t
 MPAI_AIF_AIM_Deregister(const char* name, AIM_t pointer_to_function)

Deregister the AIM with the Controller, with name name and implementation pointer_to_function.

7.5.4.3 MPAI_AIF_AIM_Use_Local_ByCode

error_t
 MPAI_AIF_AIM_Use_Local_ByCode(const char* name, AIM_t pointer_to_function)

Declare to the Controller that the AIM depends on another AIM, to be run locally, with name name

and implementation pointer_to_function. This API call may be executed only in a Trusted Zone

The source code must be available in the same implementation unit.

7.5.4.4 MPAI_AIF_AIM_Use_Local_ByID

error_t MPAI_AIF_AIM_Use_Local_ByID(const char* name, const char* ID)

Declare to the Controller that the AIM depends on another AIM, to be run locally, with name name

and implementation identified by the MPAI-AIF ID. A binary implementation corresponding to

the ID and matching the platform on which the AIW is being executed must be available from the

MPAI Store.

7.5.4.5 MPAI_AIF_AIM_Use_Remote

Declare to the Controller that the AIM depends on another AIM, to be run on the remote MPAI-

AIF instance identified by URI URI, with name name and implementation identified by the MPAI-

AIF ID. A binary implementation corresponding to the ID and matching the platform on which the

AIW for the server available at URI is being executed must be available from the MPAI Store.

7.5.5 Start/Pause/Resume/Stop Messages to other AIMs

Note: Errors encountered while transmitting/receiving these Messages are non-recoverable – i.e.,

they terminate the entire AIW. AIMs can communicate with other AIMs and the Controller uses

this API to Start/Pause/Resume/Stop the AIMs.

7.5.5.1 MPAI_AIF_AIM_Start

error_t MPAI_AIF_AIM_Start(const char* name)

Start the AIM with given name name. If the operation succeeds, it has immediate effect.

7.5.5.2 MPAI_AIF_AIM_Pause

error_t MPAI_AIF_AIM_Pause(const char* name)

Pause the AIM with given name name. If the operation succeeds, it has immediate effect.

7.5.5.3 MPAI_AIF_AIM_Resume

error_t MPAI_AIF_AIM_Resume(const char* name)

Resume the AIM with given name name. If the operation succeeds, it has immediate effect.

7.5.5.4 MPAI_AIF_AIM_Stop

error_t MPAI_AIF_AIM_Stop(const char* name)

Stop the AIM with given name name. If the operation succeeds, it has immediate effect.

7.5.5.5 MPAI_AIF_AIM_EventHandler

error_t MPAI_AIF_AIM_EventHandler(const char* name)

Create EventHandler for the AIM with given name name. If the operation succeeds, it has

immediate effect.

7.5.6 Registering AIM Ports

Note that the following calls define two Ports, one in input and one in output. This is done because

for each input/output external Port there always is one implicit output/input internal Port. By con-

vention, internal Ports can be accessed from within AIM code by giving “” as the AIM name (there

is no assigned name for the AIM being defined). External code will use the external Ports, and

refer to the AIM by using its assigned name.

7.5.6.1 MPAI_AIF_Port_InputOutput_Create

error_t MPAI_AIF_Port_InputOutput_Create(
 const char* name, size_t maxMessages, size_t maxMemory)

Define a new output port with the given name for the calling AIM. maxMessages and maxMemory

define the maximum number of pending messages and total buffer memory in bytes, respectively,

according to the Resource Allocation Policy. A value of 0 for any of the arguments uses the

defaults provided by the Controller.

7.5.6.2 MPAI_AIF_Port_InputOutput_Destroy

error_t MPAI_AIF_Port_InputOutput_Destroy(
 const char* name)

Destroy an output port with the given name.

7.5.6.3 MPAI_AIF_Port_OutputInput_Create

error_t MPAI_AIF_Port_OutputInput_Create(
 const char* name, size_t maxMessages, size_t maxMemory)

Define a new input port with the given name for the calling AIM. maxMessages and maxMemory

define the maximum number of pending messages and total buffer memory in bytes, respectively,

according to the Resource Allocation Policy. A value of 0 for any of the arguments uses the

defaults provided by the Controller.

7.5.6.4 MPAI_AIF_Port_OutputInput_Destroy

error_t MPAI_AIF_Port_OutputInput_Destroy(
 const char* name)

Destroy an input port with the given name.

7.5.6.5 MPAI_AIF_Port_InputOutput_Open

error_t MPAI_AIF_Port_InputOutput_Open(const char* name)

Open the output Port name. This call is needed before any Message can be transmitted through the

Port.

7.5.6.6 MPAI_AIF_Port_InputOutput_Close

error_t MPAI_AIF_Port_InputOutput_Close(const char* name)

Close the output Port name. After this call no more Message can be transmitted through the Port.

7.5.6.7 MPAI_AIF_Port_OutputInput_Open

error_t MPAI_AIF_Port_OutputInput_Open(const char* name)

Open the input Port name. This call is needed before any Message can be transmitted through the

Port.

7.5.6.8 MPAI_AIF_Port_OutputInput_Close

error_t MPAI_AIF_Port_OutputInput_Close(const char* name)

Close the output Port name. After this call no more Message can be transmitted through the Port.

7.5.7 Register Connections between AIMs

7.5.7.1 MPAI_AIF_Channel_Create

error_t
 MPAI_AIF_Channel_Create(const char* name, const char* out_AIM_name, const char*
out_port_name, const char* in_AIM_name, const char* in_port_name)

Create a new interconnecting channel between an output port and an input port. AIM and port

names are specified with the name used when constructed.

Note: The Channel identifies and connects one output Port to an input Port.

7.5.7.2 MPAI_AIF_Channel_Destroy

error_t
 MPAI_AIF_Channel_Destroy(const char* name)

Destroy the channel with name name. This API Call closes all Ports related to the Channel.

7.5.8 Using Ports

7.5.8.1 MPAI_AIF_Port_Output_Read

message_t* MPAI_AIF_Port_Output_Read(
 const char* AIM_name, const char* port_name)

Reads a message from the port identified by (AIM_name,port_name). The read is blocking. Hence,

in order to avoid deadlocks, one should first probe the port with MPAI_AIF_Port_Probe. It returns

a copy of the original message.

7.5.8.2 MPAI_AIF_Port_Input_Write

error_t MPAI_AIF_Port_Input_Write(
 const char* AIM_name, const char* port_name, message_t* message)

Writes a message message to the port identified by (AIM_name,port_name). The write is blocking.

Hence, in order to avoid deadlocks one should first probe the port with MPAI_AIF_Port_Probe. The

message being transmitted must remain available until the function returns, or the behaviour will

be undefined.

7.5.8.3 MPAI_AIF_Port_Reset

error_t MPAI_AIF_Port_Reset(const char* AIM_name, const char* port_name)

Reset an input or output port identified by (AIM_name,port_name) by deleting all the pending mes-

sages associated with it.

7.5.8.4 MPAI_AIF_Port_CountPendingMessages

size_t MPAI_AIF_Port_CountPendingMessages(
 const char* AIM_name, const char* port_name)

This function returns the number of pending messages on a input or output port identified by

(AIM_name,port_name).

7.5.8.5 MPAI_AIF_Port_Probe

error_t MPAI_AIF_Port_Probe(const char* port_name, message_t* message)

For this function, a return value of MPAI_AIF_OK means that one can write to the port if the port is

a FIFO input port, or that data is available to be read from the port if the port is a FIFO output port.

7.5.8.6 MPAI_AIF_Port_Select

int MPAI_AIF_Port_Output_Select(
 const char* AIM_name_1,const char* port_name_1,...)

Given a list of output Ports, returns the index of one Port for which data has become available in

the meantime. The call is blocking to address potential race conditions.

7.5.9 Operations on messages

All implementations must provide a common Message passing functionality which is abstracted

by the following functions.

7.5.9.1 MPAI_AIF_Message_Copy

message_t* MPAI_AIF_Message_Copy(message_t* message)

Make a copy of a message structure message.

7.5.9.2 MPAI_AIF_Message_Delete

message_t* MPAI_AIF_Message_Delete(message_t* message)

Delete a message message and its allocated memory.

7.5.9.3 MPAI_AIF_Message_GetBuffer

void* MPAI_AIF_Message_GetBuffer(message_t* message)

Get access to the low-level memory buffer associated with a message structure message.

7.5.9.4 MPAI_AIF_Message_GetBufferLength

size_t MPAI_AIF_Message_GetBufferLength(message_t* message)

Get the size in bits of the low-level memory buffer associated with a message structure message.

7.5.9.5 MPAI_AIF_Message_Parse

parser_t* MPAI_AIF_Message_Parse (const char* type)

Create a parsed representation of the data type defined in type according to the metadata syntax

defined in section 3.7, Type system, in order to facilitate the successive parsing of raw memory

buffers associated with message structures (see functions below).

7.5.9.6 MPAI_AIF_Message_Parse_Get_StructField

void* MPAI_AIF_Message_Parse_Get_StructField(
 parser_t* parser, void* buffer, const char* field_name)

Assume that the low-level memory buffer buffer contains data of type struct_type whose

complete parsed type definition (specified according to the metadata syntax defined in section 3.7,

Type system) can be found in parser. Fetch the member of the struct_type named field_name,

and return it in a freshly allocated low-level memory buffer. If a member with such name does not

exist, return NULL.

7.5.9.7 MPAI_AIF_Message_Parse_Get_VariantType

void* MPAI_AIF_Message_Parse_Get_VariantType(
 parser_t* parser, void* buffer, const char* type_name)

Assume that the low-level memory buffer buffer contains data of type variant_type whose

complete parsed type definition (specified according to the metadata syntax defined in section 3.7,

Type system) can be found in parser. Fetch the member of the variant_type named field_name,

and return it in a freshly allocated low-level memory buffer. If a member with such name does not

exist, return NULL.

7.5.9.8 MPAI_AIF_Message_Parse_Get_ArrayLength

int MPAI_AIF_Message_Parse_Get_ArrayLength(parser_t* parser, void* buffer)

Assume that the low-level memory buffer buffer contains data of type array_type whose

complete parsed type definition (specified according to the metadata syntax defined in section 3.7,

Type system) can be found in parser. Retrieve the length of such an array. If the buffer does not

contain an array, return -1.

7.5.9.9 MPAI_AIF_Message_Parse_Get_ArrayField

void* MPAI_AIF_Message_Parse_Get_ArrayField(
 parser_t* parser, void* buffer, const int field_num)

Assume that the low-level memory buffer buffer contains data of type array_type whose

complete parsed type definition (specified according to the metadata syntax defined in section 3.7,

Type system) can be found in parser. Fetch the element of the array_type named field_num, and

return it in a freshly allocated low-level memory buffer. If such element does not exist, return

NULL.

7.5.9.10 MPAI_AIF_Message_Parse_Delete

void MPAI_AIF_Message_Parse_Delete(parser_t* parser)

Delete the parsed representation of a data type defined by parser, and deallocate all memory

associated to it.

7.5.10 Functions specific to machine learning

7.5.10.1 Support for model update

The following API are provided to support AIM ML model update.

Such update occurs via the MPAI Store by using the MPAI Store specific APIs or via Global

(GStorage) or Internal (IStorage) storage by using the specified APIs.

The Golobal and/or Internal storage needs to be initialized via the corresponding API and then the

secure protocol of choice (as specified in the AIF metadata) can be used for the transfer.

8 Implementation Guidelines (Informative)

This chapter is to be fully developed. It will provide guidelines for implementation of:

• Message queues

• Control structures

• Messages vs Events

• Support for HW and SW

• Support for local and remote AIMs

• Scope of programming language dependence

• Scheduling of AIMs and AIWs

9 Examples (Informative)

9.1 AIF Implementations

The following two informative examples are high-level descriptions of possible AIF operations:

9.1.1 Resource-constrained implementation

1. Controller is a single process that implements the AIW and operates based on interrupts call-

backs

2. AIF is instantiated via a secure communication interface

3. AIMs can be local or has been instantiated through a secure communication interface

4. Controller initialises the AIF

5. AIF asks the AIMs to be instantiated

6. Controller manages the Events and Messages

7. User Agent can act on the AIWs at the request of the user.

9.1.2 Non-resource-constrained implementation

1. Controller and AIW are two independent processes

8. Controller manages the Events and Messages

2. AIW contacts Controller on Communication and authenticates itself

3. Controller requests AIW configuration metadata

4. AIW sends Controller the configuration metadata

5. The implementation of the AIW can be local or can be downloaded from the MPAI Store

6. Controller authenticates itself with the MPAI Store and requests implementations for the

needed AIMs listed in the metadata from the MPAI Store

7. MPAI Store sends the requested AIM implementations and the configuration metadata

8. Controller

a. Instantiates the AIMs specified in the AIW metadata

b. Manages their communication and resources by sending Messages to AIMs.

9. User Agent can gain control of AIWs running on the Controller via a specific Controller API,

e.g., User Agent can test conformance of a AIW with an MPAI standard through a dedicated

API call.

9.2 Examples of types

byte[] bitstream_t

An array of bytes, with variable length.

{int32 frameNumber; int16 x; int16 y; byte[] frame} frame_t

A struct_type with 4 members named frameNumber, x, y, and frame — they are an int32, an int16,

an int16, and an array of bytes with variable length, respectively.

{int32 i32 | int64 i64} variant_t

A variant_type that can be either an int32 or an int64.

9.3 Examples of Metadata

9.3.1 AIF Metadata
{

 "AIF": {

 "ImplementerID": 100,

 "Version": "*",

 "Profile": "Main",

 "Description": "",

 "ResourcePolicies": [

 {

 "Name": "CPU",

 "Minimum": {

 "Memory": 50000,

 "CPUClass": "OntologyEntry",

 "CPULimit": 1

 },

 "Maximum": {

 "Memory": 150000,

 "CPUClass": "OntologyEntry",

 "CPULimit": 4

 },

 "Request": {

 "Memory": 100000,

 "CPUClass": "OntologyEntry",

 "CPULimit": 2

 }

 }

],

 "Authentication": "OntologyEntry",

 "TimeBase": "OntologyEntry",

 "UserAPIProfile": "Low.V",

 "ControllerAPIProfile": {

 Version: "27",

 Level: "High"

 },

 "Implementations": [

],

 "Documentation": [

 { "URI": "https://mpai.community/standards/mpai-aif/"

 }

]

 }

}

9.3.2 AIW Metadata

The following example provides the AIW Metadata of the MPAI-MMC UST Use Case.

{

 "AIW":{

 "ImplementerID": 100,

 "Standard":{

 "Name":"MMC",

 "Use_Case": UST,

 "Version":"1",

 "Profile":"Main"

 },

 "Description":"This AIW implements UST application of MPAI-MMC",

 "Types":[

 {

 "Text_t":"{byte[] One_Byte_Text | uint16[] Two_Byte_Text}",

 "Speech_t":"uint16[]",

 "InputSelection_t":"{Enum Text | Enum Speech}",

 "Language_t":"uint8[]"

 }

],

 "Ports":[

 {

 "Name":"InputSelection",

 "Direction":"InputOutput",

 "Record_Type":"InputSelection_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"RequestedLanguage",

 "Direction":"InputOutput",

 "Record_Type":"uint8[5] Language_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"InputText",

 "Direction":"InputOutput",

 "Record_Type":"Text_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"InputSpeech1",

 "Direction":"InputOutput",

 "Record_Type":"Speech_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"InputSpeech2",

 "Direction":"InputOutput",

 "Record_Type":"Speech_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"TranslatedText",

 "Direction":"OutputInput",

 "Record_Type":"Text_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"TranslatedSpeech",

 "Direction":"OutputInput",

 "Record_Type":"Speech_t",

 "Type":"Software",

 "Protocol":""

 }

],

 "AIMs":[

 {

 "SpeechRecogniton":"@*:(S:(MMC:UST:2:SpeechRecogniton)):*",

 "Translation":"*:(S:(MMC:UST:2:Translation)):*",

 "SpeechFeatureExtraction":"@*:(S:(MMC:UST:2:LanguageUnderstanding)):*",

 "SpeechSynthesis":"@*:(S:(MMC:UST:2:SpeechSynthesis)):*"

 }

],

 "Topology":[

 {

 "RequestedLanguage":{

 "Output":{

 "Module":"",

 "Port":"RequestedLanguage"

 },

 "Input":{

 "Module":"Translation",

 "Port":"RequestedLanguage"

 }

 },

 "InputText":{

 "Output":{

 "Module":"",

 "Port":"InputText"

 },

 "Input":{

 "Module":"Translation",

 "Port":"InputText "

 }

 },

 "InputSpeech1":{

 "Output":{

 "Module":"",

 "Port":"InputSpeech1"

 },

 "Input":{

 "Module":"SpeechRecognition",

 "Port":"InputSpeech1"

 }

 },

 "InputSpeech2":{

 "Output":{

 "Module":"",

 "Port":"InputSpeech2"

 },

 "Input":{

 "Module":"SpeechFeatureExtraction",

 "Port":"InputSpeech2"

 }

 },

 "OutputSpeech":{

 "Output":{

 "Module":"SpeechSynthesis",

 "Port":"TranslatedSpeech"

 },

 "Input":{

 "Module":"",

 "Port":"TranslatedSpeech"

 }

 },

 "SpeechFeatures":{

 "Output":{

 "Module":"SpeechFeatureExtraction",

 "Port":"SpeechFeatures"

 },

 "Input":{

 "Module":"SpeechSynthesis",

 "Port":"SpeechFeatures"

 }

 },

 "RecognizedText":{

 "Output":{

 "Module":"SpeechRecognition",

 "Port":"RecognizedText"

 },

 "Input":{

 "Module":"Translation",

 "Port":"RecognizedText"

 }

 },

 "TranslatedText":{

 "Output":{

 "Module":"Translation",

 "Port":"TranslatedText"

 },

 "Input":{

 "Module":"SpeechSynthesis",

 "Port":"TranslatedText"

 }

 },

 "OutputText":{

 "Output":{

 "Module":"Translation",

 "Port":"TranslatedText"

 },

 "Input":{

 "Module":"",

 "Port":"TranslatedText"

 }

 }

 }

],

 "ResourcePolicies": [

 {

 "Name": "CPU",

 "Minimum": {

 "Memory": 50000,

 "CPUClass": "OntologyEntry",

 "CPULimit": 1

 },

 "Maximum": {

 "Memory": 100000,

 "CPUClass": "OntologyEntry",

 "CPULimit": 2

 },

 "Request": {

 "Memory": 75000,

 "CPUClass": "OntologyEntry",

 "CPULimit": 1

 }

 }

],

 "Documentation":[

 {

 "Type":"tutorial",

 "URI":"https://mpai.community/standards/mpai-mmc/"

 }

]

 }

}

9.3.3 AIM Metadata

9.3.3.1 SpeechRecognition
{

 "AIM":{

 "ImplementerID": 100,

 "Standard":{

 "Name": "SpeechRecognition",

 "Use_Case": UST,

 "Version":"1",

 "Profile":"Main"

 },

 "Description":"This AIM implements speech recognition function for UST that converts

speech to text of user utterance.",

 "Types":[

 {

 "Text_t":"{byte[] One_Byte_Text | uint16[] Two_Byte_Text}",

 "Speech_t":"uint16[]"

 }

],

 "Ports":[

 {

 "Name":"InputSpeech1",

 "Direction":"InputOutput",

 "Record_Type":"Speech_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"RecognizedText",

 "Direction":"OutputInput",

 "Record_Type":"Text_t",

 "Type":"Software",

 "Protocol":""

 }

],

 "AIMs":[

],

 "Topology":[

],

 "Documentation":[

 {

 "Type":"tutorial",

 "URI":"https://mpai.community/standards/mpai-mmc/"

 }

]

 }

}

9.3.3.2 Translation
{

 "AIM":{

 "ImplementerID": 100,

 "Standard":{

 "Name":"SpeechTranslation",

 "Use_Case": UST,

 "Version":"1",

 "Profile":"Main"

 },

 "Description":"This AIM implements Translation function.",

 "Types":[

 {

 "Text_t":"{byte[] One_Byte_Text | uint16[] Two_Byte_Text}",

 "InputSelection_t":"{Enum Text | Enum Speech}",

 "Language_t":"uint8[]"

 }

],

 "Ports":[

 {

 "Name":"InputSelection",

 "Direction":"InputOutput",

 "Record_Type":"InputSelection_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"RequestedLanguage",

 "Direction":"InputOutput",

 "Record_Type":"uint8[5] Language_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"InputText",

 "Direction":"InputOutput",

 "Record_Type":"Text_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"OutputText",

 "Direction":"OutputInput",

 "Record_Type":"Text_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"TranslatedText",

 "Direction":"OutputInput",

 "Record_Type":"Text_t",

 "Type":"Software",

 "Protocol":""

 }

],

 "AIMs":[

],

 "Topology":[

],

 "Documentation":[

 {

 "Type":"tutorial",

 "URI":"https://mpai.community/standards/mpai-mmc/"

 }

]

 }

}

9.3.3.3 Speech Feature Extraction
{

 "AIM":{

 "ImplementerID": 100,

 "Standard":{

 "Name": "SpeechFeatureExtraction",

 "Use_Case": UST,

 "Version":"1",

 "Profile":"Main"

 },

 "Description":"This AIM implements Speech Feature Extraction function.",

 "Types":[

 {

 "Speech_t":"uint16[]",

 "SpeechFeatures_t":"{byte pitch; string<256 tone; string<256 intonation;

string<256 intensity; string<256 speed; Emotion_t emotion; float32[] NNspeechFeatures}"

 }

],

 "Ports":[

 {

 "Name":"InputSpeech2",

 "Direction":"InputOutput",

 "Record_Type":"Speech_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"SpeechFeatures",

 "Direction":"OutputInput",

 "Record_Type":"SpeechFeatures_t",

 "Type":"Software",

 "Protocol":""

 }

],

 "AIMs":[

],

 "Topology":[

],

 "Documentation":[

 {

 "Type":"tutorial",

 "URI":"https://mpai.community/standards/mpai-mmc/"

 }

]

 }

}

9.3.3.4 Speech Synthesis
{

 "AIM":{

 "ImplementerID": 100,

 "Standard":{

 "Name":"SpeechSynthesis",

 "Use_Case": UST,

 "Version":"1",

 "Profile":"Main"

 },

 "Description":"This AIM implements Speech Synthesis function.",

 "Types":[

 {

 "Text_t":"{byte[] One_Byte_Text | uint16[] Two_Byte_Text}",

 "Speech_t":"uint16[]",

 "SpeechFeatures_t":"{byte pitch; string<256 tone; string<256 intonation;

string<256 intensity; string<256 speed; Emotion_t emotion; float32[] NNspeechFeatures}"

 }

],

 "Ports":[

 {

 "Name":"TranslatedText",

 "Direction":"InputOutput",

 "Record_Type":"Text_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"SpeechFeatures",

 "Direction":"InputOutput",

 "Record_Type":"SpeechFeatures_t",

 "Type":"Software",

 "Protocol":""

 },

 {

 "Name":"OutputSpeech",

 "Direction":"OutputInput",

 "Record_Type":"Speech_t",

 "Type":"Software",

 "Protocol":""

 }

],

 "AIMs":[

],

 "Topology":[

],

 "Documentation":[

 {

 "Type":"tutorial",

 "URI":"https://mpai.community/standards/mpai-mmc/"

 }

]

 }

}

Annex 1 – MPAI-wide terms and definitions (Normative)

The Terms used in this standard whose first letter is capital and are not already included in Table

1 are defined in Table 4.

Table 4 – MPAI-wide Terms

Term Definition

Access Static or slowly changing data that are required by an application such as

domain knowledge data, data models, etc.

AI Framework

(AIF)

The environment where AIWs are executed.

AI Workflow

(AIW)

An organised aggregation of AIMs implementing a Use Case receiving

AIM-specific Inputs and producing AIM-specific Outputs according to

its Function.

AI Module (AIM) A processing element receiving AIM-specific Inputs and producing AIM-

specific Outputs according to according to its Function.

Application A usage domain target of an Application Standard

Channel A connection between an output port of an AIM and an input port of an

AIM. The term “connection” is also used as synonymous.

Communication The infrastructure that implements message passing between AIMs

Component One of the 7 AIF elements: Access, Communication, Controller, Internal

Storage, Global Storage, MPAI Store, and User Agent

Conformance The attribute of an Implementation of being a correct technical Implem-

entation of a Technical Specification.

Conformance

Tester

An entity authorised by MPAI to Test the Conformance of an Implem-

entation.

Conformance

Testing

The normative document specifying the Means to Test the Conformance

of an Implementation.

Conformance

Testing Means

Procedures, tools, data sets and/or data set characteristics to Test the

Conformance of an Implementation.

Connection A channel connecting an output port of an AIM and an input port of an

AIM.

Controller A Component that manages and controls the AIMs in the AIF, so that

they execute in the correct order and at the time when they are needed

Data format The standard digital representation of data and their semantics.

Ecosystem The ensemble of the following actors: MPAI, MPAI Store, Implementers,

Conformance Testers, Performance Testers and Users of MPAI-AIF Im-

plementations as needed to enable an Interoperability Level.

Explainability The ability to trace the output of an Implementation back to the inputs

that have produced it.

Fairness The attribute of an Implementation whose extent of applicability can be

assessed by making the training set and/or network open to testing for

bias and unanticipated results.

Function The operations effected by an AIW or an AIM on input data.

Global Storage A Component to store data shared by AIMs.

Internal Storage A Component to store data of the individual AIMs.

Identifier A name that uniquely identifies an Implementation.

Implementation 1. An embodiment of the MPAI-AIF Technical Specification, or

2. An AIW or AIM of a particular Level (1-2-3) conforming with a Use

Case of an MPAI Application Standard.

Interoperability The ability to functionally replace an AIW or AIM with another AIW of

AIM having the same Interoperability Level

Interoperability

Level

The attribute of an AIW and its AIMs to be executable in an AIF Implem-

entation and to be proprietary (Level 1) or to pass the Conformance Tes-

ting (Level 2) or the Performance Testing (Level 3) of an MPAI Applic-

ation Standard.

Knowledge Base Structured and/or unstructured information made accessible to AIMs via

MPAI-specified interfaces

Message A sequence of Records transported by Communication through Channels.

Normativity The set of attributes of a technology or a set of technologies specified by

the applicable parts of an MPAI standard.

Performance The attribute of an Implementation of being Reliable, Robust, Fair and

Replicable.

Performance

Assessment

The normative document specifying the procedures, the tools, the data

sets and/or the data set characteristics to Assess the Grade of Performance

of an Implementation.

Performance

Assessment Means

Procedures, tools, data sets and/or data set characteristics to Assess the

Performance of an Implementation.

Performance

Assessor

An entity authorised by MPAI to Assess the Performance of an

Implementation in a given Application domain

Profile A particular subset of the technologies used in MPAI-AIF or an AIW of

an Application Standard and, where applicable, the classes, other subsets,

options and parameters relevant to that subset.

Record A data structure with a specified structure

Reference Software A technically correct software implementation of a Technical Specific-

ation containing source code, or source and compiled code.

Reliability The attribute of an Implementation that performs as specified by the

Application Standard, profile and version the Implementation refers to,

e.g., within the application scope, stated limitations, and for the period of

time specified by the Implementer.

Replicability The attribute of an Implementation whose Performance, as Assessed by a

Performance Assessor, can be replicated, within an agreed level, by

another Performance Assessor.

Robustness The attribute of an Implementation that copes with data outside of the

stated application scope with an estimated degree of confidence.

Service Provider An entrepreneur who offers an Implementation as a service (e.g., a

recommendation service) to Users.

Standard The ensemble of Technical Specification, Reference Software, Confor-

mance Testing and Performance Assessment of an MPAI application

Standard.

Technical

Specification

(Framework) the normative specification of the AI Framework.

(Application) the normative specification of the set of Use Cases

belonging to an Application Domain along with the AIMs required to

Implement the Use Cases. the collection of Use Cases relevant to the

Application Domain that include:

1. The formats of the Input/Output data of the AIWs implementing the

Use Cases.

2. The Topology of the AIMs of the AIWs.

3. The formats of the Input/Output data of the AIMs belonging the AIW.

Time Base The protocol specifying how Components can access timing information

Topology The set of AIM Connections of an AIW.

Use Case A particular instance of the Application domain target of an Application

Standard.

User A user of an Implementation.

User Agent The Component interfacing the user with an AIF through the Controller

Version A revision or extension of a Standard or of one of its elements.

Annex 2 - Notices and Disclaimers Concerning MPAI Standards

(Informative)

The notices and legal disclaimers given below shall be borne in mind when downloading and using

approved MPAI Standards.

In the following, “Standard” means the collection of four MPAI-approved and published

documents: “Technical Specification”, “Reference Software” and “Conformance Testing” and,

where applicable, “Performance Testing”.

Life cycle of MPAI Standards

MPAI Standards are developed in accordance with the MPAI Statutes. An MPAI Standard may

only be developed when a Framework Licence has been adopted. MPAI Standards are developed

by especially established MPAI Development Committees who operate on the basis of consensus,

as specified in Annex 1 of the MPAI Statutes. While the MPAI General Assembly and the Board

of Directors administer the process of the said Annex 1, MPAI does not independently evaluate,

test, or verify the accuracy of any of the information or the suitability of any of the technology

choices made in its Standards.

MPAI Standards may be modified at any time by corrigenda or new editions. A new edition,

however, may not necessarily replace an existing MPAI standard. Visit the web page to determine

the status of any given published MPAI Standard.

Comments on MPAI Standards are welcome from any interested parties, whether MPAI members

or not. Comments shall mandatorily include the name and the version of the MPAI Standard and,

if applicable, the specific page or line the comment applies to. Comments should be sent to the

MPAI Secretariat. Comments will be reviewed by the appropriate committee for their technical

relevance. However, MPAI does not provide interpretation, consulting information, or advice on

MPAI Standards. Interested parties are invited to join MPAI so that they can attend the relevant

Development Committees.

Coverage and Applicability of MPAI Standards

MPAI makes no warranties or representations of any kind concerning its Standards, and expressly

disclaims all warranties, expressed or implied, concerning any of its Standards, including but not

limited to the warranties of merchantability, fitness for a particular purpose, non-infringement etc.

MPAI Standards are supplied “AS IS”.

The existence of an MPAI Standard does not imply that there are no other ways to produce and

distribute products and services in the scope of the Standard. Technical progress may render the

technologies included in the MPAI Standard obsolete by the time the Standard is used, especially

in a field as dynamic as AI. Therefore, those looking for standards in the Data Compression by

Artificial Intelligence area should carefully assess the suitability of MPAI Standards for their needs.

IN NO EVENT SHALL MPAI BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO: THE NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

https://www.mpai.community/resources/
https://www.mpai.community/resources/
https://mpai.community/statutes/
https://mpai.community/statutes/
https://mpai.community/resources/
mailto:secretariat@mpai.community

THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER

SUCH DAMAGE WAS FORESEEABLE.

MPAI alerts users that practicing its Standards may infringe patents and other rights of third parties.

Submitters of technologies to this standard have agreed to licence their Intellectual Property

according to their respective Framework Licences.

Users of MPAI Standards should consider all applicable laws and regulations when using an MPAI

Standard. The validity of Conformance Testing is strictly technical and refers to the correct

implementation of the MPAI Standard. Moreover, positive Performance Assessment of an

implementation applies exclusively in the context of the MPAI Governance and does not imply

compliance with any regulatory requirements in the context of any jurisdiction. Therefore, it is the

responsibility of the MPAI Standard implementer to observe or refer to the applicable regulatory

requirements. By publishing an MPAI Standard, MPAI does not intend to promote actions that are

not in compliance with applicable laws, and the Standard shall not be construed as doing so. In

particular, users should evaluate MPAI Standards from the viewpoint of data privacy and data

ownership in the context of their jurisdictions.

Implementers and users of MPAI Standards documents are responsible for determining and

complying with all appropriate safety, security, environmental and health and all applicable laws

and regulations.

Copyright

MPAI draft and approved standards, whether they are in the form of documents or as web pages

or otherwise, are copyrighted by MPAI under Swiss and international copyright laws. MPAI

Standards are made available and may be used for a wide variety of public and private uses, e.g.,

implementation, use and reference, in laws and regulations and standardisation. By making these

documents available for these and other uses, however, MPAI does not waive any rights in

copyright to its Standards. For inquiries regarding the copyright of MPAI standards, please contact

the MPAI Secretariat.

The Reference Software of an MPAI Standard is released with the MPAI Modified Berkeley

Software Distribution licence. However, implementers should be aware that the Reference

Software of an MPAI Standard may reference some third party software that may have a different

licence.

https://mpai.community/governance/
mailto:secretariat@mpai.community
https://mpai.community/about/licence/
https://mpai.community/about/licence/

Annex 3 – The Governance of the MPAI Ecosystem (Informative)

Level 1 Interoperability

With reference to Figure 1, MPAI issues and maintains a standard – called MPAI-AIF – whose

components are:

1. An environment called AI Framework (AIF) running AI Workflows (AIW) composed of inter-

connected AI Modules (AIM) exposing standard interfaces.

2. A distribution system of AIW and AIM Implementation called MPAI Store from which an AIF

Implementation can download AIWs and AIMs.

Implementers’

benefits

Upload to the MPAI Store and have globally distributed Implementations of

- AIFs conforming to MPAI-AIF.

- AIWs and AIMs performing proprietary functions executable in AIF.

Users’ benefits Rely on Implementations that have been tested for security.

MPAI Store’s

role

- Tests the Conformance of Implementations to MPAI-AIF.

- Verifies Implementations’ security, e.g., absence of malware.

- Indicates unambiguously that Implementations are Level 1.

Level 2 Interoperability

In a Level 2 Implementation, the AIW must be an Implementation of an MPAI Use Case and the

AIMs must conform with an MPAI Application Standard.

Implementers’

benefits

Upload to the MPAI Store and have globally distributed Implementations of

- AIFs conforming to MPAI-AIF.

- AIWs and AIMs conforming to MPAI Application Standards.

Users’

benefits

- Rely on Implementations of AIWs and AIMs whose Functions have been

reviewed during standardisation.

- Have a degree of Explainability of the AIW operation because the AIM

Functions and the data Formats are known.

Market’s

benefits

- Open AIW and AIM markets foster competition leading to better products.

- Competition of AIW and AIM Implementations fosters AI innovation.

MPAI Store’s

role

- Tests Conformance of Implementations with the relevant MPAI Standard.

- Verifies Implementations’ security.

- Indicates unambiguously that Implementations are Level 2.

Level 3 Interoperability

MPAI does not generally set standards on how and with what data an AIM should be trained. This

is an important differentiator that promotes competition leading to better solutions. However, the

performance of an AIM is typically higher if the data used for training are in greater quantity and

more in tune with the scope. Training data that have large variety and cover the spectrum of all

cases of interest in breadth and depth typically lead to Implementations of higher “quality”.

For Level 3, MPAI normatively specifies the process, the tools and the data or the characteristics

of the data to be used to Assess the Grade of Performance of an AIM or an AIW.

Implementers’

benefits

May claim their Implementations have passed Performance Assessment.

Users’

benefits

Get assurance that the Implementation being used performs correctly, e.g., it

has been properly trained.

Market’s

benefits

Implementations’ Performance Grades stimulate the development of more

Performing AIM and AIW Implementations.

MPAI Store’s

role

- Verifies the Implementations’ security

- Indicates unambiguously that Implementations are Level 3.

The MPAI ecosystem

The following Figure 2 is a high-level description of the MPAI ecosystem operation applicable to

fully conforming MPAI implementations:

1. MPAI establishes and controls the not-for-profit MPAI Store (step 1).

2. MPAI appoints Performance Assessors (step 2).

3. MPAI publishes Standards (step 3).

4. Implementers submit Implementations to Performance Assessors (step 4).

5. If the Implementation Performance is acceptable, Performance Assessors inform Implementers

(step 5a) and MPAI Store (step 5b).

6. Implementers submit Implementations to the MPAI Store (step 6); The Store Tests Confor-

mance and security of the Implementation.

7. Users download Implementations (step 7).

Figure 2 – The MPAI ecosystem operation

