

Moving Picture, Audio and Data Coding by

Artificial Intelligence

www.mpai.community

N1536 2023/12/20

Source Requirements (OSD)

Title Technical Specification – Object and Scene Description (MPAI-OSD) WD for Com-

munity Comments

Target MPAI-39

This document is a Working Draft published with a request for Comments. Anybody may submit

comments to the MPAI Secretariat at secretariat@mpai.community. Comments will be considered

in the final draft of MPAI-OSD V1 if received by 2024/01/25T23:59 UTC.

mailto:secretariat@mpai.community

Moving Picture, Audio and Data Coding

by Artificial Intelligence

www.mpai.community

MPAI Technical Specification

Object and Scene Description

WD for Community Comments

WARNING

Use of the technologies described in this Technical Report may infringe patents, copyrights, or

intellectual property rights of MPAI Members or non-members.

MPAI and its Members accept no responsibility whatsoever for damages or liability, direct or

consequential, which may result from the use of this Technical Report.

Readers are invited to review Annex 3 - Notices and Disclaimers.

© Copyright MPAI 2022-23. All rights reserved.

Technical Specification

Object and Scene Description

(under development)

1 Introduction ... 5

2 Scope ... 6
3 Definitions ... 7
4 References ... 8

4.1 Normative Reference .. 8
4.2 Informative References ... 9

5 Use Cases .. 9
5.1 Conversation About a Scene (CAS).. 9

5.1.1 Scope of Conversation About a Scene .. 9

5.1.2 Reference Architecture of Conversation About a Scene .. 10
5.1.3 I/O Data of Conversation About a Scene .. 10

5.2 Human-Connected Autonomous Vehicle (CAV) Interaction (HCI) 11
5.3 Functions of Human-CAV Interaction .. 11

5.4 Reference Architecture of Human-CAV Interaction .. 11
5.5 I/O Data of Human-CAV Interaction .. 13

5.6 Environment Sensing Subsystem in a Connected Autonomous Vehicle 13
5.7 Functions of Environment Sensing Subsystem ... 13
5.8 Reference Architecture of Environment Sensing Subsystem 14

5.9 I/O Data of Environment Sensing Subsystem... 14
5.10 Autonomous Motion Subsystem in a Connected Autonomous Vehicle 15

5.11 Functions of Autonomous Motion Subsystem .. 15
5.12 Reference Architecture of Autonomous Motion Subsystem .. 16

5.13 I/O Data of Autonomous Motion Subsystem .. 17
5.14 Avatar-Based Videoconference – Transmitting Client ... 17

5.14.1 Functions of Transmitting Client .. 17
5.14.2 Reference Architecture of Transmitting Client ... 17

5.14.3 Input and output data of Transmitting Client .. 18
5.15 Avatar-Based Videoconference – Server .. 19

5.15.1 Functions of Server ... 19
5.15.2 Reference Architecture of Server .. 19
5.15.3 I/O Data of Server ... 20

5.16 Avatar-Based Videoconference – Receiving Client ... 20
5.16.1 Functions of Receiving Client ... 20

5.16.2 Reference Architecture of Receiving Client ... 20
6 Composite AI Modules ... 22

6.1 Visual Spatial Object Identification (OSD-VOI) .. 22
6.1.1 Functions of Visual Spatial Object Identification ... 22
6.1.2 Reference Architecture of Visual Spatial Object Identification 22

6.1.3 Input/output data of Visual Spatial Object Identification ... 22
6.1.4 SubAIMs ... 22

6.2 Audio-Visual Scene Description (OSD-AVD) ... 25
6.2.1 Scope ... 25
6.2.2 Reference Architecture ... 25
6.2.3 Input/output data ... 25

6.2.4 SubAIMs ... 25

7 Data Formats ... 27

7.1 Coordinates, Angles, and Objects ... 28
7.2 Spatial Attitude ... 29

7.2.1 Syntax.. 29
7.2.2 Semantics .. 31

7.3 Audio Scene Geometry ... 32

7.3.1 Syntax.. 32
7.3.2 Semantics .. 33

7.4 Audio Scene Descriptors ... 33
7.4.1 Syntax.. 33
7.4.2 Semantics .. 34

7.5 Visual Scene Geometry ... 35
7.5.1 Syntax.. 35

7.5.2 Semantics .. 36

7.6 Visual Scene Descriptors .. 36
7.6.1 Syntax.. 36
7.6.2 Semantics .. 37

7.7 Audio-Visual Scene Geometry ... 38

7.7.1 Syntax.. 38
7.7.2 Semantics .. 39

7.8 Audio-Visual Scene Descriptors ... 40
7.8.1 Syntax.. 40
7.8.2 Semantics .. 41

Annex 1 - MPAI Basics .. 43
1 General .. 43

2 Governance of the MPAI Ecosystem .. 43
3 AI Framework ... 44

4 Audio Scene Description .. 45
5 Avatar-Based Videoconference .. 45

6 Connected Autonomous Vehicles ... 46
Annex 2 - MPAI-wide terms and definitions .. 49

Annex 3 - Notices and Disclaimers Concerning MPAI Standards (Informative)......................... 52
Annex 4 - Patent declarations (Informative) ... 54
Annex 5 - JSON Metadata .. 55
1 Visual Spatial Object Identification (OSD-VOI) .. 55

1.1 Visual Direction Identification .. 57

1.2 Visual Object Extraction ... 58
1.3 Object Instance Identification ... 59

2 Audio-Visual Scene Description (OSD-AVD) ... 59
2.1 Audio Scene Description .. 62

2.1.1 Audio Analysis Transform .. 62
2.1.2 Audio Source Localisation .. 62
2.1.3 Audio Separation and Enhancement ... 62

2.1.4 Audio Synthesis Transform .. 62
2.1.5 Audio Description Multiplexing ... 62

2.2 Visual Scene Description .. 62
2.3 Audio-Visual Alignment ... 63
2.4 AV Scene Multiplexing .. 64

1 Introduction

Technical Specification: Object and Scene Description (MPAI-OSD) – in the following also called

MPAI-OSD – has been developed by MPAI – Moving Picture, Audio, and Data Coding by Arti-

ficial Intelligence, the international, unaffiliated, non-profit organisation developing standards for

Artificial Intelligence (AI)-based data coding with clear Intellectual Property Rights licensing

frameworks in compliance with the rigorous MPAI Process [9,10] in pursuit of the following pol-

icies:

1. Be friendly to the AI context but, to the extent possible, agnostic to the technology – AI or

Data Processing – used in an implementation.

2. Be attractive to different industries, end users, and regulators.

3. Address three levels of standardisation all exposing standard interfaces with an aggregation

level decided by the implementer:

3.1. data types.

3.2. Components called AI Modules (AIM).

3.3. Configurations of AIMs called AI Workflows (AIW).

4. Specify the data exchanged by AIMs with as clear a semantic as possible.

As manager of the MPAI Ecosystem specified by Governance of MPAI Ecosystem (MPAI-GME)

[1] and ensures that a user can:

1. Operate a reference implementation of the Technical Specification, by providing a Reference

Software Specification with annexed software.

2. Test the conformance of an implementation with the Technical Specification, by providing the

Conformance Testing Specification.

3. Assess the performance of an implementation of a Technical Specification, by providing the

Performance Assessment Specification.

4. Get conforming implementations possibly with a performance assessment report from a trusted

source through the MPAI Store.

Technical Specification: AI Framework (MPAI-AIF) [2] specifies a standard AI Framework (AIF)

that enables dynamic configuration, initialisation, and control of AIWs depicted in Figure 1.

Figure 1 - The AI Framework (MPAI-AIF) V2 Reference Model

MPAI-AIF enabling the secure execution of AI Workflows (AIW) that can be constituted by AI

Modules (AIM). Thus, users can have machines whose internal operation they understand to some

degree, rather than machines that are just “black boxes” resulting from unknown training with

unknown data and component developers can provide components with standard interfaces that

can have improved performance compared to other implementations.

An AIW and its AIMs may have 3 interoperability levels:

Level 1 – Implementer-specific and satisfying the MPAI-AIF Standard.

Level 2 – Specified by an MPAI Application Standard.

Level 3 – Specified by an MPAI Application Standard and certified by a Performance Assessor.

Users are free to adopt any of the three levels.

AIM can execute data processing or Artificial Intelligence algorithms and can be implemented in

hardware, software, or hybrid hardware/software. AI Module can be Composite if they include

connected AI Modules.

The MPAI-MMC V2 Technical Specification can be implemented in one of the following modal-

ities:

1. As a specific AIW implementing a Use Case, as specified in this document.

2. As a specific AIM, as specified in this document.

3. As a specific data type, as specified in this document.

However, MPAI does not mandate the choice of modality, which remains the sole decision of the

implementer.

In many MPAI Technical Specifications there are data types that refer to Objects and Scenes that

can be uni- and multimodal and possibly refer to locations that may be in a physical or virtual

space.

MPAI values the consistent use of data types across its Technical Specifications. Therefore,

MPAI-OSD has been developed to be the reference point for the consistent use of data types across

MPAI standards. When consistency is not possible because different usages are consolidated, such

usages are clearly identified, and individual specific usages recorded.

Currently, there are no MPAI-OSD specific Use Cases. Therefore, only the Scope, Reference

Models, and I/O Data of relevant Use Cases from other Technical Specifications are reported here.

The full Use Case specification can be found in the Technical Specifications owning the Use Cases.

All Use Cases are assumed to be implemented according to the MPAI-AIF.

MPAI-OSD will be accompanied by the Reference Software, Conformance Testing, and Perfor-

mance Assessment Specifications. Conformance Testing specifies methods enabling users to as-

certain whether a data type generated by an AIM, an AIM, or an AIW conform with this Technical

Specification.

2 Scope

Technical Specification: Object and Scenes Description (MPAI-OSD) specifies Data Formats to

enable description and localisation of uni- and multi-modal Objects and Scenes in a Virtual Space

for uniform use across MPAI Technical Specifications.

MPAI-OSD has been developed by the Context-based Audio Enhancement (MPAI-CAE), Multi-

modal Conversation (MPAI-MMC), and by the Portable Avatar Format (MPAI-PAF) Develop-

ment Committees, and by the Connected Autonomous Vehicle (CAV) group of the Requirements

Standing Committee.

3 Definitions

Terms beginning with a capital letter have the meaning defined in Table 1. Terms beginning with

a small letter have the meaning commonly defined for the context in which they are used. For

instance, Table 1 defines Object and Scene but does not define object and scene.

A dash “-” preceding a Term in Table 1 indicates the following readings according to the font:

1. Normal font: the Term in the table without a dash and preceding the one with a dash should be

read before that Term. For example, “Avatar” and “- Model” will yield "Avatar Model.”

2. Italic font: the Term in the table without a dash and preceding the one with a dash should be

read after that Term. For example, “Avatar” and “- Portable” will yield "Portable Avatar.”

Table 1 - General MPAI-HMC terms

Audio Digital representation of an analogue audio signal sampled at a frequency

between 8-192 kHz with a number of bits/sample between 8 and 32, and

non-linear and linear quantisation. Data with characteristics of Audio may

be synthetically produced.

Avatar An Object rendered to represent a Human of a Machine in a virtual space.

- Model An inanimate Avatar exposing animation interfaces.

- Portable A Data Type including Avatar ID, Time, Audio-VisualScene Descriptors,

Spatial Attitude, Avatar Model, Body Descriptors, Face Descriptors, Lan-

guage Preference, Speech Coding, Speech Data, Text, and Personal Status

[5].

Centre Point The point of an Object selected to have coordinates (0,0,0).

Data Information in digital form.

- Format The standard digital representation of Data.

- Type An instance of Data with a specific Data Format.

Descriptor The Digital Representation of a feature of an Object.

- Body A Data Type including the digital representation of the features of the body

of a real or digital human.

- Face A Data Type including the digital representation of a feature of the face of a

real or digital human.

Digital Represen-

tation

Data corresponding to and representing a physical entity.

Environment A Virtual Space that may be null or may include an Audio-Visual Scene.

Human A human being in a real space.

- Digital A Digitised or a Virtual Human.

- Digitised An Object that has the appearance of a specific human when rendered.

- Virtual An Object created by a computer that has a human appearance when ren-

dered but is not a Digitised Human.

Identifier The label uniquely associated with a human or an Object.

Instance An element of a set of entities – Objects, Digital Humans etc. – belonging to

some levels in a hierarchical classification (taxonomy).

- Audio The instance of an Audio Object.

- Visual The instance of a Visual Object.

Object A data structure that can be rendered to cause an Experience.

- Audio An Object described by Audio Descriptors.

- Audio-Visual An Object described by Audio-Visual Descriptors.

- Body A digital representation of the body of a Human or a Machine.

- Descriptor The digital representation of the feature of an Object.

- Digital A Digitised or a Virtual Object.

- Digitised The digital representation of a real object.

- Face The digital representation of the face of a Human or a Machine.

- Speech An Object described by Speech Descriptors.

- Text A string of Text.

- Virtual An Object not representing an object in the real environment.

- Visual An Object described by Visual Descriptors.

Orientation The 3 Euler angles of an Object in a Virtual Space.

Position The coordinates of a representative point for an object in a Virtual Space

with respect to a set of coordinate axes.

Rendering The process of instantiating a Virtual Space as a human-perceptible entity.

Scene A composition of Objects located according to a Scene Geometry.

- Audio A Scene composed of Audio Objects.

- Digital A digitised scene or a Virtual Scene

- Audio-Visual A Scene composed of Audio Objects, Visual Objects and co-located Audio-

Visual Objects.

- Visual A Scene composed of Visual Objects.

Scene Descriptors The digital representation of a feature of a scene.

- Audio A Data Type including the digital representation of the audio features of a

digital scene.

- Audio-Visual A Data Type combining the Audio or Visual Scene Descriptors.

- Visual A Data Type including the digital representation of the visual features of a

digital scene.

Scene Geometry The digital representation of the Object arrangement of a Scene.

- Audio A Data Type describing the Spatial arrangement of the Visual Objects of a

Scene.

- Audio-Visual A Data Type describing the Spatial arrangement of the Audio, Visual, and

Audio-Visual Objects of a Scene.

- Visual A Data Type describing the Spatial arrangement of the Visual Objects of a

Scene.

Attitude

- Spatial Position and Orientation and their velocities and accelerations of a Human

and Physical Object in a Real or Virtual Environment.

Virtual Space A space generated and maintained by a computing platform that can be ren-

dered.

Speech Digital representation of analogue speech sampled at a frequency between 8

kHz and 96 kHz with a number of bits/sample of 8, 16 or 24, and non-linear

and linear quantisation or compressed. Data with characteristics of Speech

may be synthetically produced.

4 References

4.1 Normative Reference

1. MPAI; Technical Specification: Governance of the MPAI ecosystem (MPAI-GME), V1.1;

https://mpai.community/standards/mpai-gme/

2. MPAI; Technical Specification: AI Framework (MPAI-AIF) V2; https://mpai.commu-

nity/standards/mpai-aif/

3. MPAI; Technical Specification: Context-based Audio Enhancement (MPAI-CAE) V2.1;

https://mpai.community/standards/mpai-cae/

4. Technical Specification: Connected Autonomous Vehicles (MPAI-CAV) – Architecture V1;

https://mpai.community/standards/mpai-cav/

5. MPAI; Technical Specification: Multimodal Conversation (MPAI-MMC) V2;

https://mpai.community/standards/mpai-mmc/

6. Technical Specification: MPAI Metaverse Model (MPAI-MMM) – Architecture V1;

https://mpai.community/standards/mpai-mmm/

7. MPAI; Technical Specification: Portable Avatar Format (MPAI-PAF) V1; https://mpai.com-

munity/standards/mpai-paf/

8. Khronos; Graphics Language Transmission Format (glTF); October 2021; https://regis-

try.khronos.org/glTF/specs/2.0/glTF-2.0.html

4.2 Informative References

9. MPAI; The MPAI Statutes; N421; https://mpai.community/statutes/

10. MPAI; Patent Policy; https://mpai.community/about/the-mpai-patent-policy/

11. MPAI; Framework Licence: Object and Scene Description; https://mpai.community/wp-con-

tent/uploads/2023/08/N1361-Framework-Licence-Object-and-Scene-Description-MPAI-

OSD.pdf

5 Use Cases

This Technical Specification refers to Use Cases of other MPAI Technical Specifications that are

relevant to this Technical Specification. Only the Scope, Reference Model, and I/O Data of the

Use Cases are reported here. In case of discrepancy between a Use Case reported here and the one

in the Technical Specification owning it, the latter prevails.

5.1 Conversation About a Scene (CAS)

The full specification of this Use Case is provided in [5].

5.1.1 Scope of Conversation About a Scene

This Use Case addresses the case of a human holding a conversation with a mMchine:

1. The Machine sees and hears an Environment containing a speaking human and some scattered

objects.

2. The Machine recognises the human’s Speech and obtains the human’s Personal Status by

capturing Speech, Face, and Gesture.

3. The human converses with the Machine indicating the object in the Environment s/he wishes

to talk to or ask questions about it using Speech, Face, and Gesture.

4. The Machine understands which object the human is referring to and generates an avatar that:

4.1. Utters Speech conveying a synthetic Personal Status that is relevant to the human’s Personal

Status as shown by his/her Speech, Face, and Gesture, and

4.2. Displays a face conveying a Personal Status that is relevant to the human’s Personal Status

and to the response the Machine intends to make.

5. The Machine displays the Scene Presentation corresponding to how it perceives the

Environment from a human-selected Point of View. The objects in the scene are labelled with

the Machine’s understanding of their semantics so that the human can understand how the

Machine sees the Environment.

https://mpai.community/about/the-mpai-patent-policy/

5.1.2 Reference Architecture of Conversation About a Scene

Figure 2 gives the Conversation About a Scene Reference Model including the input/output data,

the AIMs, and the data exchanged between and among the AIMs.

Figure 2 – Reference Model of Conversation About a Scene

The Machine operates according to the following workflow:

1. Visual Scene Description produces Body Descriptors, Visual Scene Geometry and Physical

Objects from Input Video.

2. Speech Recognition produces Recognised Text from Input Speech.

3. Spatial Object Identification produces Physical Object Instance ID from Physical Objects,

Body Descriptors, and Visual Scene Geometry.

4. Language Understanding produces Meaning and Refined Text from Recognised Text and

Physical Object ID.

5. Personal Status Extraction produces Input Personal Status from Meaning, Input Speech, Face

Descriptors, and Body Descriptors.

6. Dialogue Processing produces Machine Text and Machine Personal Status from Input Personal

Status, Meaning, and Refined Text.

7. Personal Status Display produces Machine Portable Avatar from Machine Text, and Machine

Personal Status.

8. Scene Presentation uses the Visual Scene Descriptors to produce the Rendered Scene as seen

from the user-selected Point of View. The rendering is constantly updated as the machine

improves its understanding of the scene and its objects.

5.1.3 I/O Data of Conversation About a Scene

Table 2 gives the input/output data of Conversation About a Scene.

Table 2 – I/O data of Conversation About a Scene

Input data From Comment

Input Video Camera Points to human and scene.

Input Speech Microphone Speech of human.

Point of View Human The point of view of the scene displayed by

Scene Presentation.

Output data To Comments

Rendered Scene Human Rendering of the scene containing labelled ob-

jects as perceived by Machine and seen from the

Point of View.

Machine Portable Avatar Human Machine’s avatar.

5.2 Human-Connected Autonomous Vehicle (CAV) Interaction (HCI)

Reference [4] provides the full specification of this Use Case.

5.3 Functions of Human-CAV Interaction

The Human-CAV Interaction (HCI) Subsystem performs the following high-level functions:

1. Authenticates humans e.g., for the purpose of letting them into the CAV.

2. Interprets and executes commands provided by humans, possibly after a dialogue, e.g., to go

to a Waypoint, issue commands such as turn off air conditioning, open window, call a person,

search for information, etc.

3. Displays Full Environment Representation to passengers via a viewer and allows passengers

to navigate and control the viewing.

4. Interprets conversation utterances with the support of the extracted Personal Statuses of the

humans, e.g., on the fastest way to reach a Waypoint because of an emergency, or during a

casual conversation.

5. Displays itself as a Body and Face with a mouth uttering Speech showing a Personal Status

comparable to the Personal Status that a human counterpart (e.g., driver, tour guide, interpreter)

would display in similar circumstances.

The HCI operation is highly influenced by the notion of Personal Status, the set of internal char-

acteristics of conversation humans and machines.

5.4 Reference Architecture of Human-CAV Interaction

Figure 3 gives the Human-CAV Interaction (HCI) Reference Model supporting the case of a group

of humans approaching the CAV from outside the CAV and sitting inside the CAV.

Figure 3 – Human-CAV Interaction Reference Model

The HCI operation is considered in two outdoor and indoor human-CAV interaction scenarios:

1. Audio Scene Description AIM creates the Audio Scene Description in the form of 1) Audio

(Speech) Objects corresponding to each speaking human in the Environment (close to the

CAV) and 2) Audio Scene Geometry.

2. Visual Scene Description creates the Visual Scene Descriptors in the form of Descriptors of

1) Faces and the Bodies corresponding to each human in the Environment (close to the CAV)

and 2) Visual Scene Geometry.

3. Speech Recognition recognises the speech of each human.

4. Spatial Object Alignment Identifies Audio, Visual, and Audio-Visual Objects, from Audio

and Visual Scene Geometries.

5. Spatial Object Identification produces Object ID from Physical Objects, Body Descriptors,

and Visual Scene Geometry.

6. The Full Environment Representation (FER) Viewer renders the FER in response to FER

navigation Commands.

7. Language Understanding produces the Refined Text and extracts the Meaning.

8. The Speaker Recognition and Face Recognition AIMs authenticate the humans the HCI is

interacting with. The processing of these two AIMs may be carried out remotely.

9. The Personal Status Extraction AIM extracts the Input Personal Status from Meaning, Speech,

Face Descriptors, and Body Descriptors.

10. The Dialogue Processing AIM:

10.1. Validates the human Identities.

10.2. Produces Machine Text and Machine Personal Status.

11. The Personal Status Display produces the ready-to-render Machine Portable Avatar [7] con-

veying Machine Speech and Machine Personal Status.

11.1. Issues commands to the Autonomous Motion Subsystem.

11.2. Receives and processes responses from the Autonomous Motion Subsystem.

11.3. Communicates with Remote HCIs.

5.5 I/O Data of Human-CAV Interaction

Table 3 gives the input/output data of the Human-CAV Interaction Subsystem.

Table 3 – I/O data of Human-CAV Interaction

Input data From Comment

Full Environment Rep-

resentation

Autonomous Motion Sub-

system

Rendered by Full Environment Rep-

resentation Viewers

Full Environment Rep-

resentation Commands

Cabin Passengers To control rendering of Full Environ-

ment Representation

Audio (Outdoor)) Environment Sensing Sub-

system

User authentication

User command

User conversation

Audio (Indoor) Cabin Passengers User’s social life

Commands/interaction with HCI

Video (Outdoor) Environment Sensing Sub-

system

Commands/interaction with HCI

Video (Indoor) Cabin Passengers User’s social life

Commands/interaction with HCI

LiDAR Cabin Passengers User’s social life

Commands/interaction with HCI

AMS-HCI Response Autonomous Motion Sub-

system

Response to HCI-AMS Command

Inter HCI Information Remote HCI HCI-to-HCI information

Output data To Comments

Full Environment Rep-

resentation Audio

Passenger Cabin For passengers to hear external Envi-

ronment

Full Environment Rep-

resentation Video

Passenger Cabin For passengers to view external En-

vironment

Inter HCI Information Remote HCI HCI-to-HCI information

HCI-AMS Command Autonomous Motion Sub-

system

HCI-to-AMS information

Machine Portable Ava-

tar

Cabin Passengers HCI’s avatar.

5.6 Environment Sensing Subsystem in a Connected Autonomous Vehicle

5.7 Functions of Environment Sensing Subsystem

The Environment Sensing Subsystem (ESS) of a Connected Autonomous Vehicle (CAV):

1. Uses all Subsystem devices to acquire as much as possible information from the Environment

as electromagnetic and acoustic data.

2. Receives an initial estimate of the Ego CAV’s Spatial Attitude generated by the Motion Actu-

ation Subsystem

3. Receives Environment Data (e.g., temperature, pressure, humidity, etc.) from the Motion Ac-

tuation Subsystem.

4. Produces a sequence of Basic Environment Representations (BER) for the journey.

5. Passes the Basic Environment Representations to the Autonomous Motion Subsystem.

5.8 Reference Architecture of Environment Sensing Subsystem

Figure 4 gives the Environment Sensing Subsystem Reference Model.

The typical sequence of operations of the Environment Sensing Subsystem is:

1. Compute the CAV’s Spatial Attitude using the initial Spatial Attitude provided by the Motion

Actuation Subsystem and the GNSS.

2. Receives Environment Sensing Technology (EST)-specific Data, e.g., RADAR Data provided

by the RADAR EST.

3. Produce and send EST-specific Alert, if necessary, to Autonomous Motion Subsystem.

4. Access the Basic Environment Representation at a previous time if necessary.

5. Produce EST-specific Scene Descriptors, e.g., the RADAR Scene Descriptors.

6. Integrate the Scene Descriptors from different ESTs into the Basic Environment Representa-

tion.

Note that Figure 4 assumes that:

1. Traffic Signalisation Recognition produces the Road Topology by analysing Camera Data. The

model of Figure 4 can easily be extended to the case where Data from other ESTs is processed

to compute or help compute the Road Topology.

2. Environment Sensing Technologies are individually processed. An implementation may pro-

duce a single Scene Descriptors from two or more ESTs.

Figure 4 – Environment Sensing Subsystem Reference Model

5.9 I/O Data of Environment Sensing Subsystem

The currently considered Environment Sensing Technologies (EST) are:

1. Global navigation satellite system or GNSS (~1 & 1.5 GHz Radio).

2. Geographical Position and Orientation, and their time derivatives up to 2nd order (Spatial Atti-

tude).

3. Visual Data in the visible range, possibly supplemented by depth information (400 to 700

THz).

4. LiDAR Data (~200 THz infrared).

5. RADAR Data (~25 & 75 GHz).

6. Ultrasound Data (> 20 kHz).

7. Audio Data in the audible range (16 Hz to 20 kHz).

8. Spatial Attitude (from the Motion Actuation Subsystem).

9. Other environmental data (temperature, humidity, ...).

Offline Map data can be accessed either from stored information or online.

Table 4 gives the input/output data of the Environment Sensing Subsystem.

Table 4 – I/O data of Environment Sensing Subsystem

Input data From Comment

Radar Data ~25 & 75 GHz Radio Capture Environment with Radar

Lidar Data ~200 THz infrared Capture Environment with Lidar

Camera Data Video (400-800 THz) Capture Environment with Cam-

eras

Ultrasound Data Audio (>20 kHz) Capture Environment with Ultra-

sound

Offline Map Data Local storage or online cm-level data at time of capture

Audio Data Audio (16 Hz-20 kHz) Capture Environment or cabin

with Microphone Array

Microphone Array Geome-

try

Microphone Array Microphone Array disposition

Global Navigation Satellite

System (GNSS) Data

~1 & 1.5 GHz Radio Get Pose from GNSS

Spatial Attitude Motion Actuation Subsys-

tem

To be fused with GNSS data

Other Environment Data Motion Actuation Subsys-

tem

Temperature etc. added to Basic

Environment Representation

Output data To Comment

Alert Autonomous Motion Sub-

system

Critical information from an EST.

Basic Environment Repre-

sentation

Autonomous Motion Sub-

system

ESS-derived representation of ex-

ternal Environment

5.10 Autonomous Motion Subsystem in a Connected Autonomous Vehicle

5.11 Functions of Autonomous Motion Subsystem

The functions of the Autonomous Motion Subsystem (AMS) are:

1. Receive a request to reach a destination as instructed by Human-CAV Interaction (HCI).

2. Request current Pose to Environment Sensing Subsystem (ESS).

3. Converse with HCI and settle on final Route.

4. Receive Basic Environment Representation (BER) from ESS.

5. Broadcast appropriate BER subsets to Remote AMSs.

6. Respond to specific Remote AMS requests.

7. Produce Full Environment Representation.

8. Generate Paths (Plath Planner).

9. Generate Goal and Trajectory (Motion Planner).

10. Check whether Trajectory can be implemented (Obstacle Avoider).

11. Issue Command to Motion Actuation Subsystem.

5.12 Reference Architecture of Autonomous Motion Subsystem

Figure 5 gives the Autonomous Motion Subsystem Reference Model.

Figure 5 – Autonomous Motion Subsystem Reference Model

This is the operation of the Reference Model:

1. A human requests the Human-CAV Interaction to take them to a destination.

2. HCI interprets request and passes interpretation to the AMS.

3. The AMS activates the Route Planner to generate a set of Waypoints starting from the current

Pose, obtained from the Full Environment Representation, up to the destination.

4. The Waypoints enter the Path Planner which generates a set of Poses to reach the next Way-

point.

5. For each Path, the Motion Planner generates a Trajectory to reach the next Pose.

6. Obstacle Avoider receives the Trajectory and checks if an Alert should was received.

7. If an Alert was received, Obstacle Avoider checks whether the implementation of the Trajec-

tory creates a collision.

a. If a collision is indeed detected, Obstacle Avoider requests a new Trajectory from the

Motion Planner.

b. If no collision is detected, Obstacle Avoider issues a Command to Motion Actuation

Subsystem.

8. The Motion Actuation Subsystem sends MAS-AMS Response about the execution of the Com-

mand.

9. The AMS, based on the MAS-AMS Responses received potentially conveying changes in the

Environment, can decide to discontinue the execution of the earlier Command and issue an-

other AMS-MAS Command instead.

10. The decision of each element of the said chain may be recorded in the Decision Recorder

(“black box”).

5.13 I/O Data of Autonomous Motion Subsystem

Table 5 gives the input/output data of Autonomous Motion Subsystem.

Table 5 – I/O data of Autonomous Motion Subsystem

Input data From Comment

Basic Environment Repre-

sentation

Environment Sensing

Subsystem

CAV’s Environment representation.

Alert Environment Sensing

Subsystem

Critical information from an EST in

ESS.

HCI-AMS Command Human-CAV Interaction Human commands, e.g., “take me

home”

Environment Representa-

tion

Remote AMSs Other CAVs and vehicles, and road-

side units.

MAS-AMS Response Motion Actuation Sub-

system

CAV’s response to AMS-MAS Com-

mand.

Output data To Comment

AMS-HCI Response Human-CAV Interaction MAS’s response to AMS-MAS Com-

mand

AMS-MAS Command Motion Actuation Sub-

system

Macro-instructions, e.g., “in 5s assume

a given Spatial Attitude”.
Environment Representation Remote AMSs For information to other CAVs

5.14 Avatar-Based Videoconference – Transmitting Client

Avatar-Based Videoconference is a videoconference whose participants are avatars realistically

impersonating human participants. See Chapter 5 of Annex 1 - MPAI Basics for more information

on the Avatar-Based Videoconference Use Case. This is fully specified in [9].

5.14.1 Functions of Transmitting Client

The function of a Transmitting Client is to:

1. Receive from a Participant:

1.1. Input Audio from the microphone.

1.2. Input Video from the camera.

1.3. Participant’s Avatar Model.

1.4. Participant’s language preferences (e.g., EN-US, IT-CH).

2. Send to the Server:

2.1. Speech Object (for Authentication).

2.2. Face Object (for Authentication).

2.3. Input Portable Avatars containing:

2.3.1. Language preferences (at the start).

2.3.2. Avatar Model (at the start).

2.3.3. Speech.

2.3.4. Avatar Descriptors.

5.14.2 Reference Architecture of Transmitting Client

Figure 6 gives the architecture of Transmitting Client AIW. Red text refers to data sent at meet-

ing start.

Figure 6 – Reference Model of Avatar Videoconference Transmitting Client

At the start, each participant sends to the Server:

1. Language preferences

2. Avatar model.

3. Speech Object (for Authentication).

4. Face Object (for Authentication).

During the meeting

1. The following AIMs of the Transmitting Clients produce:

1.1. Audio Scene Description: Audio Scene Descriptors.

1.2. Visual Scene Description: Visual Scene Descriptors.

1.3. Audio-Visual Alignment: Identifiers of Audio, Visual, and Audio-Visual Descriptors.

1.4. Speech Recognition: Recognised Text.

1.5. Face Description: Face Descriptors.

1.6. Body Description: Body Descriptors.

1.7. Personal Status Extraction: Personal Status.

1.8. Language Understanding: Meaning.

1.9. Portable Avatar Description: Avatar Descriptors.

2. The Transmitting Clients send Portable Avatar to the Server for distribution to Receiving Cli-

ents:

5.14.3 Input and output data of Transmitting Client

Table 6 gives the input and output data of the Transmitting Client AIW:

Table 6 – Input and output data of Client Transmitting AIW

Input Comments

Input Text Chat text used by a human to communicate with Virtual Sec-

retary or other participants

Language Preference The language participant wishes to speak and hear at the vid-

eoconference.

Input Audio Audio of Speech of participants in a meeting room.

Input Video Video of participants in a meeting room.

Avatar Model The avatar model selected by the participant.

Output Comments

Input Portable Avatar Portable Avatar produced by Transmitting Client.

Speech Object For authentication by Server.

Face Object For authentication by Server.

5.15 Avatar-Based Videoconference – Server

Avatar-Based Videoconference is a videoconference whose participants are avatars realistically

impersonating human participants. See Chapter 5 of Annex 1 - MPAI Basics for more information

on the Avatar-Based Videoconference Use Case. This is fully specified in [9].

5.15.1 Functions of Server

The Server:

1. At the start:

1.1. Receives Speech Object and Speech Objects of each Participant.

1.2. Authenticates Participants.

1.3. Receives Portable Avatars each containing Language Preference and Avatar Model.

1.4. Selects a Visual Environment.

1.5. Selects the Spatial Attitudes of Avatar Models.

1.6. Selects the common meeting language.

1.7. Distributes all Portable Avatars each containing: Visual Environment, Language

Preference, Avatar Model, and Spatial Attitude.

2. During the videoconference:

2.1. Receives Participants’ and Virtual Secretary’s Avatar Descriptors.

2.2. Translates participants’ Speech according to their language preferences.

2.3. Sends Portable Avatars containing Avatar ID, Text, Speech translated to the common

meeting language, Face Descriptors and Gesture Descriptors to Virtual Secretary.

2.4. Receives Virtual Secretary’s Portable Avatar containing Avatar ID, Text, Speech in

the common meeting language, Face Descriptors and Gesture Descriptors.

2.5. Translates Virtual Secretary’s Speech according to each participant’s language

preferences.

2.6. Sends Participants’ and Virtual Secretary’s Portable Avatars containing Avatar ID,

Text, Translated Speech, Face Descriptors and Gesture Descriptors to Receiving

Clients.

5.15.2 Reference Architecture of Server

Figure 5 gives the architecture of Server AIW. Red text refers to data sent at meeting start.

Figure 7 – Reference Model of Avatar-Based Videoconference Server

5.15.3 I/O Data of Server

Table 7 gives the input and output data of Server AIW.

Table 7 – Input and output data of Server AIW

Input Comments

Summary From Virtual Secretary.

Visual Environment Model Set by Server.

Spatial Attitudes Set by Server.

Input+VS Portable Avatars From Transmitting Clients and Virtual Secretary

Speech Objects Participants’ Speech Object for Authentication.

Face Objects Participants’ Face Object for Authentication.

Outputs Comments

Summary As above.

Portable Avatars As re-multiplexed by Server.

5.16 Avatar-Based Videoconference – Receiving Client

Participants in Avatar-Based Videoconference are avatars realistically impersonating human par-

ticipants at remote locations. See Chapter 5 of Annex 1 - MPAI Basics for more information on

the Avatar-Based Videoconference Use Case, fully specified in [7].

5.16.1 Functions of Receiving Client

The Function of the Client (Receiving Side) is to:

1. Create the Environment using the Environment Model.

2. Place and animate the Avatar Models at their Spatial Attitudes.

3. Add Speech to Avatar’s mouth.

4. Render the Audio-Visual Scene as seen from the Participant-selected Point of View.

5.16.2 Reference Architecture of Receiving Client

The Receiving Client:

1. At the start

1.1. Receives the Visual Environment and the Portable Avatars containing:

1.1.1. The Visual Environment.

1.1.2. The Avatar Models

1.1.3. The Spatial Attitudes

1.2. Creates the initial AV Scene.

2. During the Videoconference:

2.1. Receives the Avatar Models containing:

2.1.1. Speech

2.1.2. Body Descriptors

2.1.3. Face Descriptors

2.2. Creates the running AV Scene using each Avatar’s:

2.3. The Body and Face Descriptors.

2.4. The Speech.

3. Renders the Audio-Visual Scene based on the selected Point of View.

Figure 6 gives the architecture of Client Receiving AIW. Red text refers to data received at the

meeting start.

Figure 8 – Reference Model of Avatar-Based Videoconference Client (Receiving Side)

Notes:

1. An implementation may decide to display text with a visual image for accessibility purposes.

2. Audio Environment is added for completeness. However, This Standard does not provide a

specification for it.

5.16.3 I/O Data of Receiving Client

Table 8 gives the input and output data of Receiving Client.

Table 8 – Input and output data of Receiving Client AIW

Input Comments

Point of View Participant-selected point of view to see visual objects and hear audio

objects in the Virtual Environment.

Portable Avatars Portable Avatars from Server.

Output Comments

Output Audio Presented using loudspeaker (array)/earphones.

Output Visual Presented using 2D or 3D display.

6 Composite AI Modules

6.1 Visual Spatial Object Identification (OSD-VOI)

6.1.1 Functions of Visual Spatial Object Identification

The purpose of the Visual Spatial Object Identification (OSD-VOI) AIM is to provide the Identi-

fier of a Physical Object in an Environment with a plurality of Objects that a human indicates by

pointing at it with a finger.

6.1.2 Reference Architecture of Visual Spatial Object Identification

Figure 9 depicts the AIM implementing the Spatial Object Identification AIM.

Figure 9 – Reference Model of the Visual Object Identification AIM

The workflow of Visual Spatial Object Identification unfolds as follows:

1. Direction Identification provides the (ϕ,θ) angles obtained by analysing the finger of the hu-

man.

2. Object Extraction uses the Visual Scene Geometry and the Direction to find the Object inter-

sected by the line identified by (ϕ,θ) passing through the finger. It is assumed that one and only

one Object is found.

3. Object Instance Identification provides the ID of the Object Instance.

6.1.3 Input/output data of Visual Spatial Object Identification

Table 9 gives the input/output data of Spatial Object Identification.

Table 9 – I/O data of Spatial Object Identification

Input data From Comment

Body Descriptors Visual Scene Description There is a human pointing to an object

Physical Objects Visual Scene Description There are many scene objects

Scene Geometry Visual Scene Description Full description of the scene

Output data To Comments

Physical Object In-

stance ID

Human or another AIM Human points to one object only

6.1.4 SubAIMs

The Visual Spatial Object Identification Composite AIMs includes the following SubAIMs:

1. Direction Identification

2. Visual Object Extraction

3. Object Instance Identification.

6.1.4.1 Visual Direction Identification

6.1.4.1.1 Function

Visual Direction Identification (VOI-VDI):

1. Receives Visual Scene Geometry and Body Descriptors.

2. Produces the direction of a line traversing the forefinger of the Entity.

6.1.4.1.2 Reference Architecture

Figure 10 depicts the Reference Architecture of the Visual Direction Identification AIM.

Figure 10 – The Visual Direction Identification AIM

6.1.4.1.3 I/O Data

Table 10 specifies the Input and Output Data of the Visual Direction Identification AIM.

Table 10 – I/O Data of the Visual Direction Identification AIM

Input Description

Body Descriptors The Descriptors of the Body Objects of Entities in the Visual Scene.

Visual Scene Geometry The digital representation of the spatial arrangement of the Visual

Objects of the Scene.

Output Description

Visual Object Direction The direction of the line traversing the forefinger of the target Entity.

6.1.4.2 Visual Object Extraction

6.1.4.2.1 Function

Visual Object Extraction (VOI-VOE):

1. Receives Visual Scene Geometry, Visual Objects, and Direction.

2. Singles out the Visual Object indicated by the Entity.

6.1.4.2.2 Reference Architecture

Figure 11 depicts the Reference Architecture of the Visual Object Extraction AIM.

Figure 11 – The Visual Object Extraction AIM

6.1.4.2.3 I/O Data

Table 11 specifies the Input and Output Data of the Visual Object Extraction AIM.

Table 11 – I/O Data of the Visual Object Extraction AIM

Input Description

Visual Object Direction The direction of the line traversing the forefinger of the Entity.

Visual Scene Geometry The digital representation of the spatial arrangement of the Visual

Objects of the Scene.

Visual Objects The Visual Objects identified in the Visual Scene Geometry.

Output Description

Target Visual Object The Visual Object crossed by the line traversing the forefinger of the

Entity.

6.1.4.3 Object Instance Identification

6.1.4.3.1 Function

Object Instance Identification (VOI-OII):

1. Receives a Visual Object.

2. Produces an Instance ID identifying an element of a set of Visual Objects belonging to a level

in a taxonomy.

6.1.4.3.2 Reference Architecture

Figure 12 depicts the Reference Architecture of the Object Instance Identification AIM.

Figure 12 – The Visual Object Identification AIM

6.1.4.3.3 I/O Data

Table 12 specifies the Input and Output Data of the Object Instance Identification AIM.

Table 12 – I/O Data of Object Instance Identification

Input Description

Target Visual Ob-

ject

The Visual Object crossed by the line traversing the forefinger of the En-

tity.

Output Description

Visual Instance ID The Identifier of the specific Visual Object belonging to a level in the tax-

onomy.

6.1.4.4 JSON Metadata of Visual Spatial Object Identification

Specified in Annex 5 - Visual Spatial Object Identification (OSD-VOI).

6.2 Audio-Visual Scene Description (OSD-AVD)

6.2.1 Scope

The Audio-Visual Scene Description (OSD-AVD) Composite AIM receives two independently

developed Audio Scene Descriptors and Visual Scene Descriptors in the same Virtual Space and

produces Audio-Visual Scene Descriptors whose co-located Audio Objects and Visual Objects

have the same or related identifiers.

6.2.2 Reference Architecture

Figure 13 gives the Reference Model of Audio-Visual Scene Description.

Figure 13 - Reference Model of Audio-Visual Scene Description

6.2.3 Input/output data

Table 13gives the input/output data of Audio-Visual Scene Description.

Table 13 – I/O data of Audio-Visual Scene Description

Input data From Comment

Input Audio A real environment The Input Audio and Input Visual are from

the same scene

Input Visual A real environment The Input Audio and Input Visual are from

the same scene

Output data To Comments

AV Scene Descriptors Downstream AIM The co-located Audio and Visual Objects in

the Scene have the same or related identifi-

ers.

6.2.4 SubAIMs

The Audio-Visual Scene Description Composite AIMs includes the following SubAIMs:

1. Audio Scene Description

2. Visual Scene Description

3. Audio-Visual Alignment.

6.2.4.1 Audio Scene Description

Specified in MPAI-CAE V2.1 [3].

6.2.4.2 Visual Scene Description

6.2.4.2.1 Scope

The scope of the Visual Scene Description Composite AIM is to:

1. Capture the Input Visual

2. Provide the following output:

2.1. Visual Objects

2.2. Scene Geometry

2.3. Scene Descriptors

6.2.4.2.2 Reference Architecture

Figure 14 depicts the AIM implementing the Visual Scene Description AIM.

Figure 14 - Visual Scene Description AIM

6.2.4.2.3 Input/Output Data

Table 14 gives the input/output data of Spatial Object Identification.

Table 14 – I/O data of Audio Scene Description

Input data From Comment

Input Visual A real environment. The environment includes objects in scenes.

Output data To Comments

Visual Scene De-

scriptors

Downstream AIM A Data Type including the digital representation

of the visual features of a digital scene.

Visual Scene Ge-

ometry

Downstream AIM Interpreted Face Descriptors

Visual Objects Downstream AIM Visual Objects belong to two types of Objects:

1. Digitised Humans [7] represented by:

1.1. Body Descriptors

1.2. Scene Descriptors

2. Generic Visual Onjects

6.2.4.3 Audio-Visual Alignment (OSD-AVA)

6.2.4.3.1 Scope

The Audio-Visual Alignment Composite AIM takes the Objects of two independently developed

Audio Scene Description and Visual Scene Descriptions in the same Virtual Space, gives related

identifiers to the Audio Objects and Visual Objects that have the same location in the Virtual Space,

and gives independent identifiers to independently located Audio and Visual Objects.

6.2.4.3.2 Reference Architecture

Figure 15 gives the Reference model of Audio-Visual Alignment.

Figure 15 - Reference Model of Audio-Visual Alignment

6.2.4.3.3 Input/Output Data

Figure 14 gives the input/output data of Spatial Object Identification.

Table 15 – I/O data of Audio-Visual Alignment

Input data From Comment

Audio Scene Ge-

ometry

Another

AIM

A Data Type describing the Spatial arrangement of the

Audio Objects of a Scene.

Visual Scene Ge-

ometry

Another

AIM

A Data Type describing the Spatial arrangement of the

Audio Objects of a Scene.

Output data To Comments

Audio-Visual Scene

Geometry

Downstream

AIM

The identifiers of the co-located Audio and Visual Ob-

jects have the same or related identifiers

7 Data Formats

Table 16 provides the list of Data Formats target of the Call for Technologies.

Table 16 – Data formats

Name of Data Format Subsection Use Case

Coordinates, Angles, and Objects 7.1 ARA-ABV

MMC-CAS

MMC-HCI

MPAI-CAV

MPAI-MMM

Spatial Attitude 7.2 ARA-ABV

MMC-CAS

MMC-HCI

MPAI-CAV

MPAI-MMM

Audio Scene Geometry 7.3 ARA-ABV

MMC-HCI

MPAI-CAV

MPAI-MMM

Audio Scene Descriptors 7.4 ARA-ABV

MMC-HCI

MPAI-CAV

MPAI-MMM

Visual Scene Geometry 7.5 ARA-ABV

MMC-CAS

MMC-HCI

MPAI-CAV

MPAI-MMM

MMC-HCI

Visual Scene Descriptors 7.6 ARA-ABV

MMC-CAS

MMC-HCI

MPAI-CAV

MPAI-MMM

MMC-HCI

Audio-Visual Scene Geometry 7.7 ARA-ABV

MMC-CAS

MMC-HCI

MPAI-CAV

MPAI-MMM

MMC-HCI

Audio-Visual Scene Descriptors 7.8 ARA-ABV

MMC-CAS

MMC-HCI

MPAI-CAV

MPAI-MMM

MMC-HCI

The following Sections specify of the data formats.

7.1 Coordinates, Angles, and Objects

Figure 16 depict the regular way of defining Cartesian. Figure 17 depicts the Cartesian Coordi-

nates applicable to a visual capture device such as camera or LiDAR placed in an Environment

with the (x,y) plane perpendicular and crossing the Device’s sensors. The z axis is perpendicular

to the (x,y) plane and pointing to the captured scene.

Figure 16 – Cartesian and Spherical Coordi-

nates

Figure 17 – Cartesian Coordinates of a cap-

ture device

Figure 18, Figure 19, and Figure 20 graphically represent how different applications associate

the local (x,y,z) coordinates with the roll, pitch, and yaw rotations.

Figure 18 – Car Figure 19 – Human Figure 20 – Head

7.2 Spatial Attitude

Table 17 gives the components of the Spatial Attitude of an Object. The Position of an Object is

that of a representative point in the Object.

7.2.1 Syntax
{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Object Spatial Attitude",

 "type": "object",

 "properties": {

 "Header": {

 "type": "object",

 "properties": {

 "Standard": {

 "type": "string"

 },

 "Version": {

 "type": "integer"

 },

 "Subversion": {

 "type": "integer"

 }

 }

 },

 "OSAID": {

 "type": "string"

 },

 "General": {

 "type": "object",

 "properties": {

 "CoordType": {

 "type": "number"

 },

 "ObjectType": {

 "type": "number"

 },

 "Precision": {

 "type": "number"

 },

 "MediaType": {

 "type": "number"

 }

 }

 },

 "CartPosition": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "SpherPosition": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "Orientation": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "CartVelociry": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "SpherVelocity": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "OrientVelocity": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "CartAccel": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "SpherAccel": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 },

 "OrientAccel": {

 "type": "array",

 "minItems": 3,

 "maxItems": 3,

 "items": {

 "type": "number"

 }

 }

 }

}

7.2.2 Semantics

Table 17 provides the semantics of the components of the Spatial Attitude. The following should

be noted:

1. The first byte is always present.

2. Each of the other components is optional.

3. Each of Position, Velocity, and Acceleration is provided either in Cartesian (X,Y,Z) or Spher-

ical (r,φ,θ) Coordinates.

4. The Euler angles are indicated by (α,β,γ).

Table 17 – Components of the Spatial Attitude

HEADER 9 Bytes

• Standard 7 Bytes The string OSD-OSA

• Version 1 Byte Major version

• Subversion 1 Byte Minor version

OSAID 16 Bytes UUID Identifier of Object Spatial Attitude.

General

• CoordType bit 0 0: Cartesian, 1: Spherical

• ObjectType bit 1-2 00: Digital Human

01: Generic

10 and 11: reserved

• Precision bit 3 0: single precision; 1: double precision

• MediaType bit 4-6 000: Audio; 001: Visual; 010: Haptic; 011: Smell;

100: RADAR; 101: LiDAR; 110: Ultrasound; 111:

reserved

• Reserved bit 6-7 reserved

• SpatialAttitudeMask 2 Bytes 3*3 matrix of booleans (by rows)

 Position Velocity Acceleration

Cartesian

Spherical

Orientat.

Position and Orientation

• CartPosition (X,Y,Z) 12/24 Bytes Array (in metres)

• SpherPosition (r,φ,θ) 12/24 Bytes Array (in metres and degrees)

• Orient (α,β,γ) 12/24 Bytes Array (in degrees)

Velocity of Position and Orientation

• CartVelocity (X,Y,Z) 12/24 Bytes Array (in metres)

• SpherVelocity (r,φ,θ) 12/24 Bytes Array (in metres and degrees)

• OrientVelocity

(α,β,γ)

12/24 Bytes Array (in degrees)

Acceleration of Position and Orientation

• CartAccel (X,Y,Z) 12/24 Bytes Array (in metres)

• SpherAccel (r,φ,θ) 12/24 Bytes Array (in metres and degrees)

• OrientAccel (α,β,γ) 12/24 Bytes Array (in degrees)

7.3 Audio Scene Geometry

The Audio Scene Geometry format is specified in [3]. It is reported here for convenience.

7.3.1 Syntax
{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Audio Scene Geometry",

 "type": "object",

 "properties": {

 "Header": {

 "type": "object",

 "properties": {

 "Standard": {

 "type": "string"

 },

 "Version": {

 "type": "integer"

 },

 "Subversion": {

 "type": "integer"

 }

 }

 },

 "ASDID": {

 "type": "string"

 },

 "Time": {

 "type": "object",

 "properties": {

 "TimeType": {

 "type": "boolean"

 },

 "StartTime": {

 "type": "number"

 },

 "EndTime": {

 "type": "number"

 }

 }

 },

 "BlockSize": {

 "type": "integer"

 },

 "AudioObjectCount": {

 "type": "integer"

 },

 "AudioObjectsData": {

 "type": "object",

 "properties": {

 "AudioObjectID": {

 "type": "string"

 },

 "SpatialAttitude": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/SpatialAttitude.json"

 }

 }

 }

 }

}

7.3.2 Semantics

Table 18 provides the semantics of the Audio Scene Geometry.

Table 18 – Audio Scene Geometry Semantics

Label Size Description

HEADER 9 Bytes

• Standard 7 Bytes The string CAE-ASD

• Version 1 Byte Major version

• Subversion 1 Byte Minor version

ASDID 16 Bytes UUID Identifier of Audio Scene Descriptors set.

Time 17 Bytes Collects various data expressed with bits

• TimeType 0 bit 0=Relative: time starts at 0000/00/00T00:00

1=Absolute: time starts at 1970/01/01T00:00.

• Reserved 1-7 bits reserved

• StartTime 8 Bytes Start of current Audio Scene Descriptors (in µs).

• EndTime 8 Bytes End of current Audio Scene Descriptors (in µs).

BlockSize 4 Bytes Minimum BlockSize: ≥ 256.

AudioObjectCount 1 Byte Number of Audio Objects in the Audio Scene.

AudioObjectsData N1 Bytes Data associated to each Audio Object.

• AudioObjectID 1 Byte ID of a specific Audio Object in the Audio Scene.

• SamplingRate 0-3 bits 0:8, 1:16, 2:24, 3:32, 4:44.1, 5:48, 6: 64, 7: 96, 8:

192 (all kHz)

• SampleType 4-5 bits 0:16, 1:24, 2:32, 3:64 (all bits/sample)

• Reserved 6-7 bits

• Spatial Attitude N2 Bytes

7.4 Audio Scene Descriptors

The Audio Scene Descriptors format is specified in [3]. It is reported here for convenience.

7.4.1 Syntax
{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Audio Scene Descriptors",

 "type": "object",

 "properties": {

 "Header": {

 "type": "object",

 "properties": {

 "Standard": {

 "type": "string"

 },

 "Version": {

 "type": "integer"

 },

 "Subversion": {

 "type": "integer"

 }

 }

 },

 "ASDID": {

 "type": "string"

 },

 "Time": {

 "type": "object",

 "properties": {

 "TimeType": {

 "type": "boolean"

 },

 "StartTime": {

 "type": "number"

 },

 "EndTime": {

 "type": "number"

 }

 }

 },

 "BlockSize": {

 "type": "integer"

 },

 "AudioObjectCount": {

 "type": "integer"

 },

 "AudioObjectsData": {

 "type": "object",

 "properties": {

 "AudioObjectID": {

 "type": "string"

 },

 "SamplingRate": {

 "type": "number"

 },

 "SamplingType": {

 "type": "number"

 },

 "SpatialAttitude": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/SpatialAttitude.json"

 },

 "AudioObject": {

 "type": "object",

 "properties": {

 "FormatID": {

 "type": "integer"

 },

 "ObjectLength": {

 "type": "integer"

 },

 "DataInObject": {

 "$ref": "https://schemas.mpai.community/CAE/V2.1/data/AudioObject.json"

 }

 }

 }

 }

 }

 }

}

7.4.2 Semantics

Table 19 provides the semantics of Audio Scene Descriptors.

Table 19 – Audio Scene Descriptors

Label Size Description

HEADER 9 Bytes

• Standard 7 Bytes The string CAE-ASD

• Version 1 Byte Major version

• Subversion 1 Byte Minor

ASDID 16 Bytes UUID Identifier of Audio Scene Descriptors set.

Time 17 Bytes Collects various data expressed with bits

• TimeType 0 bit 0=Relative: time starts at 0000/00/00T00:00

1=Absolute: time starts at 1970/01/01T00:00.

• Reserved 1-7 bits reserved

• StartTime 8 Bytes Start of current Audio Scene Descriptors (in µs).

• EndTime 8 Bytes End of current Audio Scene Descriptors (in µs).

BlockSize 4 Bytes Minimum BlockSize: ≥ 256.

AudioObjectCount 1 Byte Number of Audio Objects in the Audio Scene.

AudioObjectsData N1 Bytes Data associated to each Audio Object.

• AudioObjectID 1 Byte ID of a specific Audio Object in the Audio Scene.

• SamplingRate 0-3 bits 0:8, 1:16, 2:24, 3:32, 4:44.1, 5:48, 6: 64, 7: 96, 8:

192 (all kHz)

• SampleType 4-5 bits 0:16, 1:24, 2:32, 3:64 (all bits/sample)

• Reserved 6-7 bits

• Spatial Attitude N2 Bytes According to MPAI-OSD V1

• AudioObject N3 Bytes

◦ FormatID 1 Byte Audio Object Format Identifier

◦ ObjectLength 4 Bytes Number of Bytes in Audio Object

◦ DataInObject N4 Bytes Data of Audio Object

7.5 Visual Scene Geometry

7.5.1 Syntax
{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Visual Scene Geometry",

 "type": "object",

 "properties": {

 "Header": {

 "type": "object",

 "properties": {

 "Standard": {

 "type": "string"

 },

 "Version": {

 "type": "integer"

 },

 "Subversion": {

 "type": "integer"

 }

 }

 },

 "VSDID": {

 "type": "string"

 },

 "Time": {

 "type": "object",

 "properties": {

 "TimeType": {

 "type": "boolean"

 },

 "StartTime": {

 "type": "number"

 },

 "EndTime": {

 "type": "number"

 }

 }

 },

 "BlockSize": {

 "type": "integer"

 },

 "VisualObjectCount": {

 "type": "integer"

 },

 "VisualObjectsData": {

 "type": "object",

 "properties": {

 "VisualObjectID": {

 "type": "string"

 },

 "SpatialAttitude": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/SpatialAttitude.json"

 }

 }

 }

 }

}

7.5.2 Semantics

Table 20 provides the semantics of Visual Scene Descriptors.

Table 20 – Visual Scene Geometry Semantics

Label Size Description

HEADER 9 Bytes

• Standard 7 Bytes The string OSD-VSD

• Version 1 Byte Major version

• Subversion 1 Byte Minor

VSDID 16 Bytes UUID Identifier of the total set of Visual Scene De-

scriptors (uuid).

Time 17 Bytes Collects various data expressed with bits

• TimeType 0 bit 0=Relative: time starts at 0000/00/00T00:00

1=Absolute: time starts at 1970/01/01T00:00.

• Reserved 1-7 bits reserved

• StartTime 8 Bytes Start time of current Visual Scene Descriptors (in mi-

croseconds).

• EndTime 8 Bytes End time of current Visual Scene Descriptors (in mi-

croseconds).

BlockSize 4 Bytes

VisualObjectCount 1 Byte Number of Visual Objects in Visual Scene.

VisualObjectsData N1 Bytes Data associated to each Visual Object.

• VisualObjectID 1 Byte ID of a specific Visual Object in a Visual Scene.

• Reserved 1 Byte

• SpatialAttitudeMask 2 Bytes 3*3 matrix of booleans (by rows)

 Position Velocity Acceleration

Cartesian

Spherical

Orientation

• SpatialAttitude N2 Bytes N2=N1-N3-3

7.6 Visual Scene Descriptors

7.6.1 Syntax
{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Visual Scene Descriptors",

 "type": "object",

 "properties": {

 "Header": {

 "type": "object",

 "properties": {

 "Standard": {

 "type": "string"

 },

 "Version": {

 "type": "integer"

 },

 "Subversion": {

 "type": "number"

 }

 }

 },

 "VSDID": {

 "type": "string"

 },

 "Time": {

 "type": "object",

 "properties": {

 "TimeType": {

 "type": "boolean"

 },

 "StartTime": {

 "type": "number"

 },

 "EndTime": {

 "type": "number"

 }

 }

 },

 "BlockSize": {

 "type": "integer"

 },

 "VisualObjectCount": {

 "type": "integer"

 },

 "VisualObjectsData": {

 "type": "object",

 "properties": {

 "VisualObjectID": {

 "type": "string"

 },

 "SpatialAttitude": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/SpatialAttitude.json"

 },

 "VisualObject": {

 "type": "object",

 "properties": {

 "FormatID": {

 "type": "integer"

 },

 "ObjectLength": {

 "type": "integer"

 },

 "DataInObject": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/VisualObject.json"

 }

 }

 }

 }

 }

 }

}

7.6.2 Semantics

Table 21 provides the semantics of Visual Scene Descriptors.

Table 21 – Visual Scene Descriptors Semantics

Label Size Description

HEADER 9 Bytes

• Standard 7 Bytes The string OSD-VSD

• Version 1 Byte Major version

• Subversion 1 Byte Minor

VSDID 16 Bytes UUID Identifier of the total set of Visual Scene De-

scriptors (uuid).

Time 17 Bytes Collects various data expressed with bits

• TimeType 0 bit 0=Relative: time starts at 0000/00/00T00:00

1=Absolute: time starts at 1970/01/01T00:00.

• Reserved 1-7 bits reserved

• StartTime 8 Bytes Start time of current Visual Scene Descriptors (in mi-

croseconds).

• EndTime 8 Bytes End time of current Visual Scene Descriptors (in mi-

croseconds).

BlockSize 4 Bytes

VisualObjectCount 1 Byte Number of Visual Objects in Visual Scene.

VisualObjectsData N1 Bytes Data associated to each Visual Object.

• VisualObjectID 1 Byte ID of a specific Visual Object in a Visual Scene.

• Reserved 1 Byte

• SpatialAttitudeMask 2 Bytes 3*3 matrix of booleans (by rows)

 Position Velocity Acceleration

Cartesian

Spherical

Orientation

• SpatialAttitude N2 Bytes According to MPAI-OSD V1

• VisualObject N3 Bytes

◦ FormatID 1 Byte Visual Object Format Identifier

◦ Length 4 Bytes Number of Bytes in Visual Object

◦ DataInObject N4 Bytes Data of Visual Object

7.7 Audio-Visual Scene Geometry

7.7.1 Syntax
{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Audio-Visual Scene Geometry",

 "type": "object",

 "properties": {

 "Header": {

 "type": "object",

 "properties": {

 "Standard": {

 "type": "string"

 },

 "Version": {

 "type": "integer"

 },

 "Subversion": {

 "type": "integer"

 }

 }

 },

 "AVDID": {

 "type": "string"

 },

 "Time": {

 "type": "object",

 "properties": {

 "TimeType": {

 "type": "boolean"

 },

 "StartTime": {

 "type": "number"

 },

 "EndTime": {

 "type": "number"

 }

 }

 },

 "BlockSize": {

 "type": "integer"

 },

 "AVObjectCount": {

 "type": "integer"

 },

 "AVObjectsData": {

 "type": "object",

 "properties": {

 "AVObjectID": {

 "type": "string"

 },

 "SamplingRate": {

 "type": "number"

 },

 "SamplingType": {

 "type": "number"

 },

 "SpatialAttitude": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/SpatialAttitude.json"

 }

 }

 }

 }

}

7.7.2 Semantics

Table 22 provides the semantics of the Audio-Visual Scene Geometry.

Table 22 – Audio-Visual Scene Geometry

Label Size Description

HEADER 9 Bytes

• Standard 7 Bytes The string OSD-VSD

• Version 1 Byte Major version

• Subversion 1 Byte Minor

AVDID 16 Bytes UUID Identifier of the total set of Audio-Visual

Scene Descriptors.

Time 17 Bytes Collects various data expressed with bits

• TimeType 0 bit 0=Relative: time starts at 0000/00/00T00:00

1=Absolute: time starts at 1970/01/01T00:00.

• Reserved 1-7 bits reserved

• StartTime 8 Bytes Start time of current Audio-Visual Scene Descriptors

(in microseconds).

• EndTime 8 Bytes End time of current Audio-Visual Scene Descriptors

(in microseconds).

BlockSize 4 Bytes Minimum BlockSize: ≥ 256 (uint32).

AVObjectCount 1 Byte Number of Objects in Scene.

AVObjectData N1 Bytes Data associated to each Object.

• AVObjectID 1 Byte ID of a specific Object in the Scene.

• SamplingRate 0-3 bits 0: 8kHz, 1: 16kHz, 2: 24kHz, 3: 32kHz, 4: 44.1kHz,

5: 48kHz, 6: 64kHz, 7: 96kHz, 8: 192kHz

• SampleType 4-5 bits 0:16bit, 1:24bit, 2:32bit, 3:64bit)

• Reserved 6-7 bits

• SpatialAttitudeMask 2 Bytes 3*3 matrix of booleans (by rows)

 Position Velocity Acceleration

Cartesian

Spherical

Orientation

• SpatialAttitude N2 Bytes N2=N1-N3(or N4)-3

7.8 Audio-Visual Scene Descriptors

7.8.1 Syntax
{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "title": "Audio-Visual Scene Descriptors",

 "type": "object",

 "properties": {

 "Header": {

 "type": "object",

 "properties": {

 "Standard": {

 "type": "string"

 },

 "Version": {

 "type": "integer"

 },

 "Subversion": {

 "type": "integer"

 }

 }

 },

 "AVDID": {

 "type": "string"

 },

 "Time": {

 "type": "object",

 "properties": {

 "TimeType": {

 "type": "boolean"

 },

 "StartTime": {

 "type": "number"

 },

 "EndTime": {

 "type": "number"

 }

 }

 },

 "BlockSize": {

 "type": "integer"

 },

 "AVObjectCount": {

 "type": "integer"

 },

 "AVObjectsData": {

 "type": "object",

 "properties": {

 "AVObjectID": {

 "type": "string"

 },

 "SamplingRate": {

 "type": "number"

 },

 "SamplingType": {

 "type": "number"

 },

 "SpatialAttitude": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/SpatialAttitude.json"

 },

 "AVObject": {

 "type": "object",

 "properties": {

 "FormatID": {

 "type": "integer"

 },

 "ObjectLength": {

 "type": "integer"

 },

 "DataInAObject": {

 "$ref": "https://schemas.mpai.community/CAE/V2.1/data/AudioObject.json"

 },

 "DataInVObject": {

 "$ref": "https://schemas.mpai.community/OSD/V1.0/data/VisualObject.json"

 }

 }

 }

 }

 }

 }

}

7.8.2 Semantics

Table 23 provides the semantics of the Audio-Visual Scene Descriptors.

Table 23 – Audio-Visual Scene Descriptors

Label Size Description

HEADER 9 Bytes

• Standard 7 Bytes The string OSD-VSD

• Version 1 Byte Major version

• Subversion 1 Byte Minor

AVDID 16 Bytes UUID Identifier of the total set of Audio-Visual

Scene Descriptors.

Time 17 Bytes Collects various data expressed with bits

• TimeType 0 bit 0=Relative: time starts at 0000/00/00T00:00

1=Absolute: time starts at 1970/01/01T00:00.

• Reserved 1-7 bits reserved

• StartTime 8 Bytes Start time of current Audio-Visual Scene Descriptors

(in microseconds).

• EndTime 8 Bytes End time of current Audio-Visual Scene Descriptors

(in microseconds).

BlockSize 4 Bytes Minimum BlockSize: ≥ 256 (uint32).

AVObjectCount 1 Byte Number of Objects in Scene.

AVObjectData N1 Bytes Data associated to each Object.

• AVObjectID 1 Byte ID of a specific Object in the Scene.

• SamplingRate 0-3 bits 0: 8kHz, 1: 16kHz, 2: 24kHz, 3: 32kHz, 4: 44.1kHz,

5: 48kHz, 6: 64kHz, 7: 96kHz, 8: 192kHz

• SampleType 4-5 bits 0:16bit, 1:24bit, 2:32bit, 3:64bit)

• Reserved 6-7 bits

• SpatialAttitudeMask 2 Bytes 3*3 matrix of booleans (by rows)

 Position Velocity Acceleration

Cartesian

Spherical

Orientation

• SpatialAttitude N2 Bytes According to MPAI-OSD V1

• AudioObject N3 Bytes

◦ FormatID 1 Byte Audio Object Format Identifier

◦ Length 4 Bytes Number of Bytes in Audio Object

◦ DataInObject N4 Bytes Data of Audio Object

• VisualObject N5 Bytes

◦ FormatID 1 Byte Visual Object Format Identifier

◦ Length 4 Bytes Number of Bytes in Audio Object

◦ DataInObject N6 Bytes Data of Visual Object

Annex 1 - MPAI Basics

1 General

In recent years, Artificial Intelligence (AI) and related technologies have been introduced in a

broad range of applications affecting the life of millions of people and are expected to do so much

more in the future. As digital media standards have positively influenced industry and billions of

people, so AI-based data coding standards are expected to have a similar positive impact. In addi-

tion, some AI technologies may carry inherent risks, e.g., in terms of bias toward some classes of

users making the need for standardisation more important and urgent than ever.

The above considerations have prompted the establishment of the international, unaffiliated, not-

for-profit Moving Picture, Audio and Data Coding by Artificial Intelligence (MPAI) organisation

with the mission to develop AI-enabled data coding standards to enable the development of AI-

based products, applications, and services.

As a rule, MPAI standards include four documents: Technical Specification, Reference Software

Specifications, Conformance Testing Specifications, and Performance Assessment Specifications.

The last – and new in standardisation – type of Specification includes standard operating proce-

dures that enable users of MPAI Implementations to make informed decision about their applica-

bility based on the notion of Performance, defined as a set of attributes characterising a reliable

and trustworthy implementation.

2 Governance of the MPAI Ecosystem

Technical Specification: Governance of the MPAI Ecosystem lays down the foundations of the

MPAI Ecosystem. MPAI develops and maintains the following documents the following technical

documents :

1. Technical Specification.

2. Reference Software Specification.

3. Conformance Testing.

4. Performance Assessment.

5. Technical Report

An MPAI Standard is a collection of a variable number of the 5 document types.

Figure 21 depicts the operation of the MPAI ecosystem generated by MPAI Standards.

Figure 21 – The MPAI ecosystem operation

Table 24 identifies the following roles in the MPAI Ecosystem:

Table 24 - Roles in the MPAI Ecosystem

MPAI Publishes Standards.

Establishes the not-for-profit MPAI Store.

Appoints Performance Assessors.

Implementers Submit Implementations to Performance Assessors.

Performance

Assessors

Inform Implementation submitters and the MPAI Store if Implementation Per-

formance is acceptable.

Implementers Submit Implementations to the MPAI Store.

MPAI Store Assign unique ImplementerIDs (IID) to Implementers in its capacity as Imple-

menterID Registration Authority (IIDRA)1.

Verifies security and Tests Implementation Conformance.

Users Download Implementations and report their experience to MPAI.

3 AI Framework

In general, MPAI Application Standards are defined as aggregations – called AI Workflows (AIW)

– of processing elements – called AI Modules (AIM) – executed in an AI Framework (AIF). MPAI

defines Interoperability as the ability to replace an AIW or an AIM Implementation with a func-

tionally equivalent Implementation.

Figure 22 depicts the MPAI-AIF Reference Model under which Implementations of MPAI Appli-

cation Standards and user-defined MPAI-AIF Conforming applications operate [2].

Figure 22 – The AI Framework (AIF) Reference Model

MPAI Application Standards normatively specify the Syntax and Semantics of the input and out-

put data and the Function of the AIW and the AIMs, and the Connections between and among the

AIMs of an AIW.

An AIW is defined by its Function and input/output Data and by its AIM topology. Likewise, an

AIM is defined by its Function and input/output Data. MPAI standard are silent on the technology

1 At the time of publication of this Technical Report, the MPAI Store was assigned as the IIDRA.

used to implement the AIM which may be based on AI or data processing, and implemented in

software, hardware or hybrid software and hardware technologies.

MPAI also defines 3 Interoperability Levels of an AIF that executes an AIW. Table 25 gives the

characteristics of an AIW and its AIMs of a given Level:

Table 25 - MPAI Interoperability Levels

Level AIW AIMs

1 An implementation of a use case Implementations able to call the MPAI-

AIF APIs.

2 An Implementation of an MPAI Use Case Implementations of the MPAI Use Case

3 An Implementation of an MPAI Use Case

certified by a Performance Assessor

Implementations of the MPAI Use Case

certified by Performance Assessors

4 Audio Scene Description

The ability to describe (i.e., digitally represent) an audio-visual scene is a key requirement of sev-

eral Use Cases. Technical Specification: Context-based Audio Enhancement (MPAI-CAE) V2.1 [9]

that includes the specification of Audio Scene Descriptors produced by the Composite Audio

Scene Description AI Module (AIM) and depicted in Figure 28.

Figure 23 - The Audio Scene Description Composite AIM

5 Avatar-Based Videoconference

Technical Report: Avatar-Based Videoconference (MPAI-ARA) specifies AIWs and AIMs of a

Use Case where geographically distributed humans hold a videoconference represented by their

avatars having their visual appearance and uttering their real voice (Figure 24).

Figure 24 – Avatar-Based Videoconference end-to-end diagram

Figure 25 contains the reference architectures of the four AW Workflows constituting the Avatar-

Based Videoconference: Client (Transmission side), Server, Virtual Secretary, and Client (Receiv-

ing side).

Figure 25 - The AIWs of Avatar-Based Videoconference

6 Connected Autonomous Vehicles

MPAI defines a Connected Autonomous Vehicle (CAV), as a physical system that:

1. Converses with humans by understanding their utterances, e.g., a request to be taken to a des-

tination.

2. Acquires information with a variety of sensors on the physical environment where it is located

or traverses like the one depicted in Figure 26.

3. Plans a Route enabling the CAV to reach the requested destination.

4. Autonomously reaches the destination by:

4.1. Moving in the physical environment.

4.2. Building Digital Representations of the Environment.

4.3. Exchanging elements of such Representations with other CAVs and CAV-aware entities.

4.4. Making decisions about how to execute the Route.

4.5. Acting on the CAV motion actuation to implement the decisions.

Figure 26 - An environment of CAV opera-

tion

Figure 27 – The MPAI-CAV subsystems

MPAI believes in the capability of standards to accelerate the creation of a global competitive

CAV market and has published Technical Specification: Connected Autonomous Vehicle (MPAI-

CAV) – Architecture that includes (see Figure 27):

1. A CAV Reference Model broken down into four Subsystems.

2. The Functions of each Subsystem.

3. The Data exchanged between Subsystems.

4. A breakdown of each Subsystem in Components (see Figure 28) of which the following is

specified:

4.1. The Functions of the Components.

4.2. The Data exchanged between Components.

4.3. The Topology of Components and their Connections.

5. Functional Requirements of the Data exchanged (under development).

6. Standard technologies for the Data exchanged (in the future).

Figure 28 - The MPAI-CAV Subsystems with their Components (left-right & top bottom: Human-

Cav Interaction, Environment Sensing Subsystem, Autonomous Motion Subsystem, and Motion

Actuation Subsystem)

Subsystems are implemented as AI Workflows and Components as AI Modules according to Tech-

nical Specification: AI Framework (MPAI-AIF) [4].

Annex 2 - MPAI-wide terms and definitions

The Terms used in this standard whose first letter is capital and are not already included in Table

1 are defined in Table 26.

Table 26 - MPAI-wide Terms

Term Definition

Access Static or slowly changing data that are required by an application such as

domain knowledge data, data models, etc.

AI Framework

(AIF)

The environment where AIWs are executed.

AI Modules (AIM) A data processing element receiving AIM-specific Inputs and producing

AIM-specific Outputs according to according to its Function. An AIM

may be an aggregation of AIMs.

AI Workflow

(AIW)

A structured aggregation of AIMs implementing a Use Case receiving

AIW-specific inputs and producing AIW-specific outputs according to

the AIW Function.

Application Stand-

ard

An MPAI Standard designed to enable a particular application domain.

Channel A connection between an output port of an AIM and an input port of an

AIM. The term “connection” is also used as synonymous.

Communication The infrastructure that implements message passing between AIMs

Composite AIM An AIM aggregating more than one AIM.

Component One of the 7 AIF elements: Access, Communication, Controller, Internal

Storage, Global Storage, Store, and User Agent

Conformance The attribute of an Implementation of being a correct technical Implem-

entation of a Technical Specification.

Conformance Tester An entity Testing the Conformance of an Implementation.

Conformance Test-

ing

The normative document specifying the Means to Test the Conformance

of an Implementation.

Conformance Test-

ing Means

Procedures, tools, data sets and/or data set characteristics to Test the

Conformance of an Implementation.

Connection A channel connecting an output port of an AIM and an input port of an

AIM.

Controller A Component that manages and controls the AIMs in the AIF, so that

they execute in the correct order and at the time when they are needed

Data Format The standard digital representation of data.

Data Semantics The meaning of data.

Ecosystem The ensemble of actors making it possible for a User to execute an ap-

plication composed of an AIF, one or more AIWs, each with one or more

AIMs potentially sourced from independent implementers.

Explainability The ability to trace the output of an Implementation back to the inputs

that have produced it.

Fairness The attribute of an Implementation whose extent of applicability can be

assessed by making the training set and/or network open to testing for

bias and unanticipated results.

Function The operations effected by an AIW or an AIM on input data.

Global Storage A Component to store data shared by AIMs.

Internal Storage A Component to store data of the individual AIMs.

Identifier A name that uniquely identifies an Implementation.

Implementation 1. An embodiment of the MPAI-AIF Technical Specification, or

2. An AIW or AIM of a particular Level (1-2-3) conforming with a Use

Case of an MPAI Application Standard.

Implementer A legal entity implementing MPAI Technical Specifications.

ImplementerID

(IID)

A unique name assigned by the ImplementerID Registration Authority

to an Implementer.

ImplementerID

Registration Au-

thority (IIDRA)

The entity appointed by MPAI to assign ImplementerID’s to Implement-

ers.

Interoperability The ability to functionally replace an AIM with another AIW having the

same Interoperability Level

Interoperability

Level

The attribute of an AIW and its AIMs to be executable in an AIF Imple-

mentation and to:

1. Be proprietary (Level 1)

2. Pass the Conformance Testing (Level 2) of an Application Standard

3. Pass the Performance Testing (Level 3) of an Application Standard.

Knowledge Base Structured and/or unstructured information made accessible to AIMs via

MPAI-specified interfaces

Message A sequence of Records transported by Communication through Chan-

nels.

Normativity The set of attributes of a technology or a set of technologies specified by

the applicable parts of an MPAI standard.

Performance The attribute of an Implementation of being Reliable, Robust, Fair and

Replicable.

Performance As-

sessment

The normative document specifying the Means to Assess the Grade of

Performance of an Implementation.

Performance As-

sessment Means

Procedures, tools, data sets and/or data set characteristics to Assess the

Performance of an Implementation.

Performance Asses-

sor

An entity Assessing the Performance of an Implementation.

Profile A particular subset of the technologies used in MPAI-AIF or an AIW of

an Application Standard and, where applicable, the classes, other subsets,

options and parameters relevant to that subset.

Record A data structure with a specified structure

Reference Model The AIMs and theirs Connections in an AIW.

Reference Software A technically correct software implementation of a Technical Specifica-

tion containing source code, or source and compiled code.

Reliability The attribute of an Implementation that performs as specified by the Ap-

plication Standard, profile and version the Implementation refers to, e.g.,

within the application scope, stated limitations, and for the period of time

specified by the Implementer.

Replicability The attribute of an Implementation whose Performance, as Assessed by

a Performance Assessor, can be replicated, within an agreed level, by

another Performance Assessor.

Robustness The attribute of an Implementation that copes with data outside of the

stated application scope with an estimated degree of confidence.

Scope The domain of applicability of an MPAI Application Standard

Service Provider An entrepreneur who offers an Implementation as a service (e.g., a rec-

ommendation service) to Users.

Standard The ensemble of Technical Specification, Reference Software, Confor-

mance Testing and Performance Assessment of an MPAI application

Standard.

Technical Specifica-

tion

(Framework) the normative specification of the AIF.

(Application) the normative specification of the set of AIWs belonging

to an application domain along with the AIMs required to Implement the

AIWs that includes:

1. The formats of the Input/Output data of the AIWs implementing the

AIWs.

2. The Connections of the AIMs of the AIW.

3. The formats of the Input/Output data of the AIMs belonging to the

AIW.

Testing Laboratory A laboratory accredited to Assess the Grade of Performance of Imple-

mentations.

Time Base The protocol specifying how Components can access timing information

Topology The set of AIM Connections of an AIW.

Use Case A particular instance of the Application domain target of an Application

Standard.

User A user of an Implementation.

User Agent The Component interfacing the user with an AIF through the Controller

Version A revision or extension of a Standard or of one of its elements.

Annex 3 - Notices and Disclaimers Concerning MPAI Standards (Informa-
tive)

The notices and legal disclaimers given below shall be borne in mind when downloading and using

approved MPAI Standards.

In the following, “Standard” means the collection of four MPAI-approved and published docum-

ents: “Technical Specification”, “Reference Software” and “Conformance Testing” and, where

applicable, “Performance Testing”.

Life cycle of MPAI Standards

MPAI Standards are developed in accordance with the MPAI Statutes. An MPAI Standard may

only be developed when a Framework Licence has been adopted. MPAI Standards are developed

by especially established MPAI Development Committees who operate on the basis of consensus,

as specified in Annex 1 of the MPAI Statutes. While the MPAI General Assembly and the Board

of Directors administer the process of the said Annex 1, MPAI does not independently evaluate,

test, or verify the accuracy of any of the information or the suitability of any of the technology

choices made in its Standards.

MPAI Standards may be modified at any time by corrigenda or new editions. A new edition, how-

ever, may not necessarily replace an existing MPAI standard. Visit the web page to determine the

status of any given published MPAI Standard.

Comments on MPAI Standards are welcome from any interested parties, whether MPAI members

or not. Comments shall mandatorily include the name and the version of the MPAI Standard and,

if applicable, the specific page or line the comment applies to. Comments should be sent to the

MPAI Secretariat. Comments will be reviewed by the appropriate committee for their technical

relevance. However, MPAI does not provide interpretation, consulting information, or advice on

MPAI Standards. Interested parties are invited to join MPAI so that they can attend the relevant

Development Committees.

Coverage and Applicability of MPAI Standards

MPAI makes no warranties or representations of any kind concerning its Standards, and expressly

disclaims all warranties, expressed or implied, concerning any of its Standards, including but not

limited to the warranties of merchantability, fitness for a particular purpose, non-infringement etc.

MPAI Standards are supplied “AS IS”.

The existence of an MPAI Standard does not imply that there are no other ways to produce and

distribute products and services in the scope of the Standard. Technical progress may render the

technologies included in the MPAI Standard obsolete by the time the Standard is used, especially

in a field as dynamic as AI. Therefore, those looking for standards in the Data Compression by

Artificial Intelligence area should carefully assess the suitability of MPAI Standards for their needs.

IN NO EVENT SHALL MPAI BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO: THE NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

https://www.mpai.community/resources/
https://www.mpai.community/resources/
https://mpai.community/statutes/
https://mpai.community/statutes/
https://mpai.community/resources/
mailto:secretariat@mpai.community

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF AD-

VISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER

SUCH DAMAGE WAS FORESEEABLE.

MPAI alerts users that practicing its Standards may infringe patents and other rights of third parties.

Submitters of technologies to this standard have agreed to licence their Intellectual Property ac-

cording to their respective Framework Licences.

Users of MPAI Standards should consider all applicable laws and regulations when using an MPAI

Standard. The validity of Conformance Testing is strictly technical and refers to the correct imple-

mentation of the MPAI Standard. Moreover, positive Performance Assessment of an implementa-

tion applies exclusively in the context of the MPAI Governance and does not imply compliance

with any regulatory requirements in the context of any jurisdiction. Therefore, it is the responsi-

bility of the MPAI Standard implementer to observe or refer to the applicable regulatory require-

ments. By publishing an MPAI Standard, MPAI does not intend to promote actions that are not in

compliance with applicable laws, and the Standard shall not be construed as doing so. In particular,

users should evaluate MPAI Standards from the viewpoint of data privacy and data ownership in

the context of their jurisdictions.

Implementers and users of MPAI Standards documents are responsible for determining and com-

plying with all appropriate safety, security, environmental and health and all applicable laws and

regulations.

Copyright

MPAI draft and approved standards, whether they are in the form of documents or as web pages

or otherwise, are copyrighted by MPAI under Swiss and international copyright laws. MPAI

Standards are made available and may be used for a wide variety of public and private uses, e.g.,

implementation, use and reference, in laws and regulations and standardisation. By making these

documents available for these and other uses, however, MPAI does not waive any rights in copy-

right to its Standards. For inquiries regarding the copyright of MPAI standards, please contact the

MPAI Secretariat.

The Reference Software of an MPAI Standard is released with the MPAI Modified Berkeley Soft-

ware Distribution licence. However, implementers should be aware that the Reference Software

of an MPAI Standard may reference some third party software that may have a different licence.

https://mpai.community/standards/mpai-gme/
mailto:secretariat@mpai.community
https://mpai.community/about/licence/
https://mpai.community/about/licence/

Annex 4 - Patent declarations (Informative)

Technical Specification: Object and Scene Description (MPAI-OSD) V1 has been developed ac-

cording to the process outlined in the MPAI Statutes [9] and the MPAI Patent Policy [10], and

following the prescriptions of Framework Licence: Object and Scene Description (MPAI-OSD)

[11].

Table 27 will report the list of entities who will agree to licence their standard essential patents

reading on Technical Specification: Object and Scene Description (MPAI-OSD) V1 according to

[11].:

Table 27 - Companies having submitted a patent declaration on (MPAI-OSD)

Entity Name Email address

The declarations2 will be published when patent declarations will be received in response to re-

quests for declarations.

Annex 5 - JSON Metadata

1 Visual Spatial Object Identification (OSD-VOI)
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-OSD",

 "AIW": "",

 "AIM": "VisualSpatialObjectIdentification",

 "Version": "1"

 },

 "Description": "This AIM provides the ID of the Instance of the Visual Spatial Object indi-

cated by a human or avatar.",

 "Types": [

 {

 "Name": "BodyDescriptors_t",

 "Type": "uint8[]}"

 },

 {

 "Name": "VisualSceneGeometry_t",

 "Type": "uint8[]}"

 },

 {

 "Name": "VisualObject_t",

 "Type": "uint8[]"

 },

 {

 "Name": "InstanceID_t",

 "Type": "Audio_t[]"

 }

],

 "Ports": [

 {

 "Name": "BodyDescriptors",

 "Direction": "InputOutput",

 "RecordType": " BodyDescriptors_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualSceneDescriptors",

 "Direction": "InputOutput",

 "RecordType": "VisualSceneDescriptors_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualObject",

 "Direction": "InputOutput",

 "RecordType": "VisualObject_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualInstanceID",

 "Direction": "OutputInput",

 "RecordType": "VisualInstanceID_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

"SubAIMs": [

 {

 "Name": "VisualDirectionIdentification",

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Standard": "MPAI-CAE",

 "AIW": "",

 "AIM": "VisualDirectionIdentification",

 "Version": "1"

 }

 }

 },

 {

 "Name": "VisualObjectExtraction",

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Standard": "MPAI-OSD",

 "AIW": "",

 "AIM": "VisualObjectExtraction",

 "Version": "1"

 }

 }

 },

 {

 "Name": "ObjectInstanceIdentification",

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Standard": "MPAI-MMC",

 "AIW": "",

 "AIM": "ObjectInstanceIdentification",

 "Version": "1"

 }

 }

 },

],

"Topology": [

 {

 "_comment": "Input to first AIM column" },

 {

 "Output": {

 "AIMName": "",

 "PortName": "BodyDescriptors"

 },

 "Input": {

 "AIMName": "VisualDirectionIdentification",

 "PortName": "BodyDescriptors"

 }

 },

 {

 "_comment": "Input to second AIM column" },

 {

 {

 "Output": {

 "AIMName": "VisualDirectionIdentification",

 "PortName": "VisualObjectDirection"

 },

 "Input": {

 "AIMName": "Visual Object Extraction",

 "PortName": "VisualObjectDirection"

 }

 },

 {

 "_comment": "Input to third AIM column" },

 {

 {

 "Output": {

 "AIMName": "VisualObjectExtraction",

 "PortName": "TargetVisualObject"

 },

 "Input": {

 "AIMName": "Visual Object Extraction",

 "PortName": "TargetVisualObject"

 }

 },

 {

 "_comment": "Input to output" },

 {

 {

 "Output": {

 "AIMName": "ObjectInstanceIdentification",

 "PortName": "VisualInstanceID"

 },

 "Input": {

 "AIMName": "",

 "PortName": "VisualInstanceID"

 }

 },

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 "URI": "https://mpai.community/standards/mpai-osd/"

 }

]

 }

}

1.1 Visual Direction Identification
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-OSD",

 "AIW": "",

 "AIM": "VisualDirectionIdentification",

 "Version": "1"

 },

 "Description": "This AIM identifies the Direction of the Visual Object crossed by the line

traversing the finger used by the human or avatar to indicate the Visual Object.",

 "Types": [

 {

 "Name": "BodyDescriptors_t",

 "Type": "uint8[]"

 },

 {

 "Name":"VisualSceneGeometry_t",

 "Type":"{uint8[]"

 },

 {

 "Name": "VisualObjectDirection_t",

 "Type": "uint8[]"

 }

],

 "Ports": [

 {

 "Name": "BodyDescriptors",

 "Direction": "InputOutput",

 "RecordType": "BodyDescriptors_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualSceneGeometry",

 "Direction": "OutputInput",

 "RecordType": "VisualSceneGeometry_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualObjectDirection",

 "Direction": "OutputInput",

 "RecordType": "VisualObjectDirection_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

 "SubAIMs": [],

 "Topology": [],

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 }

]

 }

}

1.2 Visual Object Extraction
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-OSD",

 "AIW": "",

 "AIM": "VisualObjectExtraction",

 "Version": "1"

 },

 "Description": "This AIM identifies the Direction of the Visual Object crossed by the line

traversing the finger used by the human or avatar to indicate the Visual Object.",

 "Types": [

 {

 "Name": "VisualObjectDirection_t",

 "Type": "uint8[]"

 },

 {

 "Name":"VisualSceneGeometry_t",

 "Type":"{uint8[]"

 },

 {

 "Name": "VisualObject_t",

 "Type": "uint8[]"

 }

],

 "Ports": [

 {

 "Name": "VisualObjectDirection",

 "Direction": "InputOutput",

 "RecordType": "VisualObjectDirection_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualSceneGeometry",

 "Direction": "OutputInput",

 "RecordType": "VisualSceneGeometry_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "TargetVisualObject",

 "Direction": "OutputInput",

 "RecordType": "TargetVisualObject_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

 "SubAIMs": [],

 "Topology": [],

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 }

]

 }

}

1.3 Object Instance Identification
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-OSD",

 "AIW": "",

 "AIM": "ObjectInstanceIdentification",

 "Version": "1"

 },

 "Description": "This AIM identifies the Visual Object instance.",

 "Types": [

 {

 "Name": "VisualObject_t",

 "Type": "uint8[]"

 },

 {

 "Name": "VisualInstanceID_t",

 "Type": "uint8[]"

 }

],

 "Ports": [

 {

 "Name": "TargetVisualObject",

 "Direction": "InputOutput",

 "RecordType": "TargetVisualObject_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualInstanceID",

 "Direction": "OutputInput",

 "RecordType": "VisualInstanceID_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

 "SubAIMs": [],

 "Topology": [],

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 }

]

 }

}

2 Audio-Visual Scene Description (OSD-AVD)
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-OSD",

 "AIW": "",

 "AIM": "AVSceneDescription",

 "Version": "1"

 },

 "Description": "This AIM receives two independently developed Audio Scene Descriptors and

Visual Scene Descriptors in the same Virtual Space and produces Audio-Visual Scene Descriptors

whose co-located Audio Objects and Visual Objects have the same or related identifiers.",

 "Types": [

 {

 "Name": "Audio_t",

 "Type": "uint16[]"

 },

 {

 "Name": "ArrayAudio_t",

 "Type": "Audio_t"

 },

 {

 "Name":"Video_t",

 "Type":"{uint8[] Red; uint8[] Green; uint8[] Blue; uint8[]; uint16[] Depth}"

 },

 {

 "Name": "AVSceneDescriptors_t",

 "Type": "uint8[]}"

 }

],

 "Ports": [

 {

 "Name": "InputAudio",

 "Direction": "InputOutput",

 "RecordType": "ArrayAudio_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "InputVisual",

 "Direction": "InputOutput",

 "RecordType": "Visual_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "AVSceneDescriptors",

 "Direction": "InputOutput",

 "RecordType": "AVSceneDescriptors_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

"SubAIMs": [

 {

 "Name": "AudioSceneDescription",

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Standard": "MPAI-CAE",

 "AIW": "",

 "AIM": "AudioSceneDescription",

 "Version": "2.1"

 }

 }

 },

 {

 "Name": "VisualSceneDescription",

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Standard": "MPAI-OSD",

 "AIW": "",

 "AIM": "VisualSceneDescription",

 "Version": "1"

 }

 }

 },

 {

 "Name": "AVAlignment",

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Standard": "MPAI-OSD",

 "AIW": "",

 "AIM": "AVAlignment",

 "Version": "1"

 }

 }

 },

 {

 "Name": "AVSceneMultiplexing",

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Standard": "MPAI-OSD",

 "AIW": "",

 "AIM": "AVSceneMultiplexing",

 "Version": "1"

 }

 }

 }

],

"Topology": [

 {

 "_comment": "Input to first AIM column"

 },

 "Output": {

 "AIMName": "",

 "PortName": "InputAudio"

 },

 "Input": {

 "AIMName": "AudioSceneDescription",

 "PortName": "InputAudio"

 }

 },

 "Output": {

 "AIMName": "",

 "PortName": "InputVisual"

 },

 "Input": {

 "AIMName": "VisualSceneDescription",

 "PortName": "InputVisual"

 }

 },

 {

 "_comment": "Input to second AIM column"

 },

 {

 "Output": {

 "AIMName": "AudioSceneDescription",

 "PortName": "AudioSceneGeometry"

 },

 "Input": {

 "AIMName": "AVAlignment",

 "PortName": "AudioSceneGeometry"

 }

 },

 {

 "Output": {

 "AIMName": "VisualSceneDescription",

 "PortName": "VisualSceneGeometry"

 },

 "Input": {

 "AIMName": "AVAlignment",

 "PortName": "VisualSceneGeometry"

 }

 },

 {

 "_comment": "Input to third AIM column"

 },

 {

 "Output": {

 "AIMName": "AudioSceneDescription",

 "PortName": "AudioObjects"

 },

 "Input": {

 "AIMName": "AVSceneMultiplexing",

 "PortName": " AudioObjects "

 }

 },

 {

 "Output": {

 "AIMName": "AVAlignment",

 "PortName": "AVSceneGeometry"

 },

 "Input": {

 "AIMName": "AVSceneMultiplexing",

 "PortName": "AVSceneGeometry"

 }

 },

 {

 "_comment": "Input to output"

 },

 {

 "Output": {

 "AIMName": "AVSceneMultiplexing",

 "PortName": "AVSceneDescription"

 },

 "Input": {

 "AIMName": "",

 "PortName": "AVSceneDescription"

 }

 }

],

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 "URI": "https://mpai.community/standards/mpai-osd/"

 }

]

 }

}

2.1 Audio Scene Description
https://schemas.mpai.community/CAE/V2.1/ASD/AudioSceneDescription.json

2.1.1 Audio Analysis Transform
https://schemas.mpai.community/CAE/V2.1/ASD/AAT/AudioAnalysisTransform.json

2.1.2 Audio Source Localisation
https://schemas.mpai.community/CAE/V2.1/ASD/ASL/AudioSourceLocalisation.json

2.1.3 Audio Separation and Enhancement
https://schemas.mpai.community/CAE/V2.1/ASD/ASE/AudioSeparationAndEnhancement.json

2.1.4 Audio Synthesis Transform
https://schemas.mpai.community/CAE/V2.1/ASD/AST/AudioSynthesisTransform.json

2.1.5 Audio Description Multiplexing
https://schemas.mpai.community/CAE/V2.1/ASD/ADM/AudioDescriptionMultiplexing.json

2.2 Visual Scene Description
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-OSD",

 "AIW": "",

 "AIM": "VisualSceneDescription",

 "Version": "1"

 },

 "Description": "This AIM describes the Visual Objects in a Scene.",

 "Types": [

 {

 "Name":"Video_t",

 "Type":"{uint8[] Red; uint8[] Green; uint8[] Blue; uint8[]; uint16[] Depth}"

 },

 {

 "Name": "VisualSceneGeometry_t",

 "Type": "uint8[]"

 },

 {

 "Name": "VisualObject_t",

 "Type": "uint8[]"

 }

],

 "Ports": [

 {

 "Name": "InputVisual",

 "Direction": "InputOutput",

 "RecordType": "InputVisual_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualSceneGeometry",

 "Direction": "OutputInput",

 "RecordType": "VisualSceneGeometry_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualObject",

 "Direction": "InputOutput",

 "RecordType": "VisualObject_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

 "SubAIMs": [],

 "Topology": [],

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 }

]

 }

}

2.3 Audio-Visual Alignment
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-CAE",

 "AIW": "",

 "AIM": "AudioVisualAlignment",

 "Version": "2.1"

 },

 "Description": "This AIM identifies the Visual Object instance.",

 "Types": [

 {

 "Name": "AudioSceneGeometry_t",

 "Type": "uint8[]"

 },

 {

 "Name": "VisualSceneGeometry_t",

 "Type": "uint8[]"

 },

 {

 "Name": "AVSceneGeometry_t",

 "Type": "uint8[]"

 }

],

 "Ports": [

 {

 "Name": "InputVisual",

 "Direction": "InputOutput",

 "RecordType": "InputVisual_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualSceneGeometry",

 "Direction": "OutputInput",

 "RecordType": "AVSceneGeometry_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualObject",

 "Direction": "OutputInput",

 "RecordType": "VisualObject_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

"SubAIMs": [],

"Topology": [],

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 "URI": "https://mpai.community/standards/mpai-osd/"

 }

]

 }

}

2.4 AV Scene Multiplexing
{

 "Identifier": {

 "ImplementerID": "/* String assigned by IIDRA */",

 "Specification": {

 "Name": "MPAI-OSD",

 "AIW": "",

 "AIM": "AVSceneMultiplexing",

 "Version": "1"

 },

 "Description": "This AIM multiplexes the components of the AV Scene Descriptors.",

 "Types": [

 {

 "Name": "AudioObject_t",

 "Type": "uint8[]"

 },

 {

 "Name": "AVSceneGeometry_t",

 "Type": "uint8[]"

 },

 {

 "Name": "VisualObject_t",

 "Type": "uint8[]"

 },

 {

 "Name": "AVSceneDescriptors_t",

 "Type": "uint8[]"

 }

],

 "Ports": [

 {

 "Name": "AudioObject",

 "Direction": "InputOutput",

 "RecordType": "AudioObject_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "AVSceneGeometry",

 "Direction": "OutputInput",

 "RecordType": "AVSceneGeometry_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "VisualObject",

 "Direction": "InputOutput",

 "RecordType": "VisualObject_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 },

 {

 "Name": "AVSceneDescriptors",

 "Direction": "OutputInput",

 "RecordType": "AVSceneDescriptors_t",

 "Technology": "Software",

 "Protocol": "",

 "IsRemote": false

 }

],

 "SubAIMs": [],

 "Topology": [],

 "Implementations": [],

 "Documentation": [

 {

 "Type": "Tutorial",

 "URI": "https://mpai.community/standards/mpai-osd/"

 }

]

 }

}

