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Foreword 

The international, unaffiliated, non-profit Moving Picture, Audio, and Data Coding by Artificial 

Intelligence (MPAI) organisation was established in September 2020 in the context of: 

1. Increasing use of Artificial Intelligence (AI) technologies applied to a broad range of domains 

affecting millions of people 

2. Marginal reliance on standards in the development of those AI applications 

3. Unprecedented impact exerted by standards on the digital media industry affecting billions of 

people 

believing that AI-based data coding standards will have a similar positive impact on the 

Information and Communication Technology industry. 

The design principles of the MPAI organisation as established by the MPAI Statutes are the 

development of AI-based Data Coding standards in pursuit of the following policies: 

1. Publish upfront clear Intellectual Property Rights licensing frameworks. 

2. Adhere to a rigorous standard development process. 

3. Be friendly to the AI context but, to the extent possible, remain agnostic to the technology thus 

allowing developers freedom in the selection of the more appropriate – AI or Data Processing 

– technologies for their needs. 

4. Be attractive to different industries, end users, and regulators. 

5. Address five standardisation areas: 

1. Data Type, a particular type of Data, e.g., Audio, Visual, Object, Scenes, and 

Descriptors with as clear semantics as possible. 

2. Qualifier, specialised Metadata conveying information on Sub-Types, Formats, and 

Attributes of a Data Type. 

3. AI Module (AIM), processing elements with identified functions and input/output Data 

Types. 

4. AI Workflow (AIW), MPAI-specified configurations of AIMs with identified functions 

and input/output Data Types. 

5. AI Framework (AIF), an environment enabling dynamic configuration, initialisation, 

execution, and control of AIWs. 

6. Provide appropriate Governance of the ecosystem created by MPAI Technical Specifications 

enabling users to: 

1. Operate Reference Software Implementations of MPAI Technical Specifications 

provided together with Reference Software Specifications 

2. Test the conformance of an implementation with a Technical Specification using the 

Conformance Testing Specification. 

3. Assess the performance of an implementation of a Technical Specification using the 

Performance Assessment Specification. 

4. Obtain conforming implementations possibly with a performance assessment report 

from a trusted source through the MPAI Store. 

Today, the MPAI organisation operated on four solid pillars: 

1. The MPAI Patent Policy specifies the MPAI standard development process and the 

Framework Licence development guidelines. 

2. Technical Specification: Artificial Intelligence Framework (MPAI-AIF) V2.1 specifies an 

environment enabling initialisation, dynamic configuration, and control of AIWs in the 

standard AI Framework environment depicted in Figure 1. An AI Framework can execute AI 

applications called AI Workflows (AIW) typically including interconnected AI Modules 

(AIM).  MPAI-AIF supports small- and large-scale high-performance components and 

promotes solutions with improved explainability. 

https://mpai.community/about/the-mpai-patent-policy/
https://mpai.community/standards/mpai-aif/v2-1/


 
Figure 1 - The AI Framework (MPAI-AIF) V2.1 Reference Model 

 

3. Technical Specification: Data Types, Formats, and Attributes (MPAI-TFA) V1.2 specifies 

Qualifiers, a type of metadata supporting the operation of AIMs receiving data from other 

AIMs. Qualifiers convey information on Sub-Types (e.g., the type of colour), Formats (e.g., 

the type of compression and transport), and Attributes (e.g., semantic information in the 

Content). Although Qualifiers are human-readable, they are only intended to be used by AIMs. 

Therefore, Text, Speech, Audio, Visual, and other Data exchanged by AIWs and AIMs should 

be interpreted as being composed of Content (Text, Speech, Audio, and Visual as appropriate) 

and associated Qualifiers. Therefore a Text Object is composed of Text Data and Text Qualifier. 

The specification of most MPAI Data Types reflects this point. 

4. Technical Specification: Governance of the MPAI Ecosystem (MPAI-GME) V1.1 defines 

the following elements: 

1. Standards, i.e., the ensemble of Technical Specifications, Reference Software, 

Conformance Testing, and Performance Assessment. 

2. Developers of MPAI-specified AIMs and Integrators of MPAI-specified AIWS 

(Implementers). 

3. MPAI Store in charge of making AIMs and AIWs submitted by Implementers available 

to Integrators and End Users. 

4. Performance Assessors, independent entities assessing the performance of 

implementations in terms of Reliability, Replicability, Robustness, and Fairness. 

5. End Users. 

 

The interaction between and among actors of the MPAI Ecosystem are depicted in Figure 2. 

 
Figure 2 - The MPAI Ecosystem 

https://mpai.community/standards/mpai-tfa/v1-2/
https://mpai.community/standards/mpai-gme/mpai-gme-specification/


1 Introduction  

In an online Authoritative Multiplayer Game, each player uses a client to send control data to a 

server. The server updates the current Game State with the data from all clients and then broadcasts 

it to all clients. The data originating from a client may be properly or maliciously generated and 

properly received or not received at all. In both cases, the Game State received from the server 

does not describe a correct and consistent situation.  

  

Among the most widespread game network architectures, Authoritative Servers maintain 

consistency among all connected clients (i.e., the game instances executed locally by players) 

acting as the central arbiter and controller of the Game State. 

 

 Authoritative server architectures are not immune to the challenges posed by network problems, 

especially Latency, i.e., the delay incurred by data transmitted by a player instance to the game 

server, because it can disrupt the seamless flow of gameplay. 

 

There are several techniques [1] currently used to cure this situation. In Client Prediction [2], client 

game state is updated locally using predicted or interpolated data while waiting for the server data; 

in Time Delay [3] [4], [5], [6], the server buffers the game state updates to synchronise all clients; 

and in Time Warp [7] the server rolls back the game state to when controller data was sent by a 

client and acts as if the action was taken then, reconciling this new game state with the current 

game state. These methods have shortcomings. Client Prediction causes perceptible delay, Time 

Delay affects responsiveness, and Time Warp disadvantages other players because the new game 

state likely differs from the previous one. 

 

Technical Report: Server-based Predictive Multiplayer Gaming (MPAI-SPG) – Mitigation of Data 

Loss Effects (SPG-MDL) V1.0 describes the steps and a methodology that involves server-level 

prediction techniques. Specifically, the server uses a predictive model to forecast player actions 

based on historical data and the current Game State when Latency-affected clients are detected. 

These predictions are then shared with all clients, ensuring a continuous and unified gaming 

experience. The approach leverages Machine Learning (ML) algorithms, an area of research that 

is only recently being explored in the context of Latency mitigation strategies for online 

multiplayer games. Furthermore, the server could also identify possible cheating attempts by 

comparing predictions with the current Game State, especially when clients have greater control 

over their local instances (i.e., client prediction).  

 

2 Scope  

Technical Report: Server-based Predictive Multiplayer Gaming (MPAI-SPG) – Mitigation of Data 

Loss Effects (SPG-MDL) V1.0 – in the following also called SPG-MDL V1.0 or SPG-MDL – 

provides guidelines on the design and use of Neural Networks that produce reliable and accurate 

predictions that may be used to compensate the absence of players’ control data in multiplayer 

gaming contexts based on authoritative server architectures.  

 

SPG-MDL V1.0 does not consider: 

1. Data corrupted by the network. 

2. Client cheating.   

 



3 Terms and Definitions 

Capitalised Terms have the meaning defined in Table 1 or by other MPAI Technical Specifications 

whose definition is accessible online. Non-capitalised terms have the meaning commonly defined 

for the context in which they are used. 

A dash “-” preceding a Term in Table 1 means the following: 

1. If the font is normal, the Term in Table 1 without a dash and preceding the one with a dash 

should be placed before that Term. The notation is used to concentrate in one place all the 

Terms that are composed of, e.g., the word Client followed by the word Cheating, Data or 

Prediction. 

2. If the font is italic, the Term in Table 1 without a dash and preceding the one with a dash 

should be placed after that Term. The notation is used to concentrate in one place all the Terms 

that are composed of, e.g., the word Engine preceded by one of the words Behaviour, Game 

State, Physics, and Rules. 

 

All MPAI terms are accessible online here. 

 

Table 1 - MPAI-SPG specific terms and acronyms 

Term Acronym Definition 

Checkpoint  An invisible gate which a car passes through during a race. 

A car must go through all the checkpoints in order to 

complete a lap. 

Client   

- Cheating  An operation of a client deliberately sending wrong data to 

the game server. 

- Data CD Any data sent by the client to the server. 

- Prediction  A technique used on the client in an authoritative server 

architecture, to predict a Game State. 

Curriculum Learning  A training strategy which starts with simpler examples and 

gradually increasing complexity. 

Engine   

- Behaviour  The Engine that computes the evolution of the Game State 

by translating the inputs of the players into corresponding 

actions. 

- Game State   A process managing the Game State of the server. 

- Physics  The Engine that computes the evolution of the Game State 

using the rules underpinning the physics of the 

Environment. 

- Rules  The Engine that computes the evolution of the Game State 

using the rules underpinning the game logic. 

Entity  Any object or character within the game world that can 

interact with other objects or characters. 

Environment  The virtual space where the game takes place and the objects 

populating it. 

Environmental Data  Data regarding the Environment: Tile type and Tile ranking 

Game   

- Clock Period  The time required by the game engine to update the game 

state. 

https://mpai.community/standards/mpai-osd/v1-2/definitions/#Table1
http://db.mpai.community/
https://mpai.community/standards/mpai-osd/v1-2/definitions/#Table1
https://mpai.community/standards/mpai-osd/v1-2/definitions/#Table1
https://mpai.community/standards/mpai-osd/v1-2/definitions/#Table1
https://dbmpai.rf.gd/?i=1


- Message GM Messages exchanged between the Game State Engine and 

the Physics, Rules and Behaviour Engines containing 

information proper of the relevant Engine. 

- Message* GM* Messages that each of the Physics, Rules, and Behaviour 

Engines-AIs receive from the Game State DMUX and send 

to the Game State Assembler. 

- Server   

- State GS A data type representing all the information about the game 

at a given instant. 

- State DMUX GS-

DMUX 

AIM that demultiplexes the GS received from the GS Engine 

into discrete Game Messages* (𝐺𝑀𝑡 ). 

Gaming   

- Authoritative 

multiplayer  

 A type of gaming where a central system maintains the 

definitive game state, enforces rules, and resolves player 

actions to ensure consistency, fairness, and synchronization 

across participants. 

- Multiplayer  A form of video gaming that allows multiple players to 

interact and compete against each other or cooperate as 

teammates over a network, either locally or online. 

- Predictive 

Multiplayer 

 A technique that anticipates player actions and decisions, 

enhancing the gaming experience by reducing the impact of 

latency in multiplayer gaming. 

Long Short-Term 

Memory 

LSTM A type of recurrent neural network architecture, designed to 

recognize patterns in sequences of data. 

Machine Learning ML A Process using training data to create a Model able to 

perform specific tasks such as classification and regression. 

Model  A Data Type representing an Artificial Neural Network. 

Multilayer Perceptron MLP A class of feedforward artificial neural network that consists 

of at least three layers of nodes: an input layer, one or more 

hidden layers, and an output layer. 

Non-Player 

Characters  

NPC Game entities not controlled by the clients' inputs. 

Neural Network NN A set of interconnected data processing nodes whose 

connections are affected by weights. Also referred to as 

Artificial Neural Network. 

Prediction   

Predicted Game State 

Assembler 

GS-ASS These predictions are assembled by the Predicted Game 

State Assembler (GS-ASS), forming the predicted Game 

State (𝑝𝐺𝑆𝑡+1), which is then communicated back to the 

server for the next iteration of Game State evaluation. Note 

that, the formats of both, the computed and predicted GSs 

are the same.  

Ranking  A position in a hierarchy or scale. 

Server Prediction  A technique used on the server, to predict the next Game 

State without the Client Data. 

Spatial Attitude SA A Data Type representing an object’s Position, Orientation 

and their Velocities and Accelerations. 

Tile  A portion of the racetrack. 

- Ranking  The position of the Tile from the start of the racetrack. 



- Type  The shape of the Tile: straight, narrow curve and wide curve. 

Time   

- Delay  A Latency effect mitigation technique used to keep the game 

synchronised in all clients. 

- Warp  A latency effect mitigation technique used on the server to 

evaluate the consequences of a client’s action based on their 

latency delay. 
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5 AI Workflow  

5.1 Functions 

The model considered by SPG-MDL exploits Neural Networks to make accurate Game States 

predictions. Whenever a client packet is lost, the server evaluates the new Game State thanks to 

the SPG-MDL prediction: if it is accurate, the Latency of a player is invisible to the unaffected 

clients without decreasing the game responsiveness or fairness. The Prediction can also be used to 



detect cheating attempts by comparing the prediction with the server Game State. This use, 

however, is not considered by SPG-MDL V1.0. 

 

SPG-MDL focuses on keeping the game synchronised between server and clients. Whenever the 

server needs to evaluate a new Game State, the server requests the SPG-MDL module (Figure 4) 

to compute the next state through AI Modules before updating the game. If there is any missing 

data or if the evaluated Game State is too different from the SPG-MDL prediction, the server uses 

the latter to update the Game State.  

 

In this way, even if a client is experiencing Latency, it is perceived by the other clients as having 

a continuous playing behaviour. The advantage of this method is that, if predictions are accurate, 

the effect of the synchronisation process on the lagging client is not noticeable to the player when 

the network resumes normal operations. Additionally, SPG-MDL helps with reducing the server-

client delay. A client with high latency will still receive the results of its actions with a delay, but 

the server will send the new Game State before receiving the action from the client, effectively 

halving the waiting time. Therefore, all clients can achieve an optimal user experience. Since 

MPAI-SPG-MDL is installed only on the server, it is possible to implement additional techniques 

at Client side to mitigate this problem, for example Client Prediction. 

5.2 Reference Model  

As SPG-MDL works in an authoritative server context, the server evaluates a new Game State at 

every time step using all CDs received from remote players (Figure 3).  

 

 
Figure 3 - Operation of Authoritative server 

Once computed, the new GS is distributed to each client instance. Within the SPG-MDL 

framework, the Game State is composed of a series of Game Messages (GM), which are output 

from three principal engines:  

1. Behaviour Engine, orchestrating actions from players and non-player entities. 

2. Rules Engine, ensuring adherence to game mechanics. 

3. Physics Engine, responsible for physical interactions within the game environment.  

 

SPG-MDL is a “twin” Game Server that is called into action when some CDs are not received 

(Figure 4). The following steps explain the procedure: 

1. The server feeds the current Game State (GSt) to the SPG-MDL’s Game State Demultiplexer. 

2. The Demultiplexer deconstructs the Game State into discrete Game Messages* (𝐺𝑀𝑡) where 

the added ‘*’ symbol differentiates these Game Messages from the server’s.  



3. Each Game Message* is processed by its respective Engine AI, a trained Neural Network 

Model that produces a predicted Game Message* (𝑝𝐺𝑀𝑡+1). 

4. The Predicted Game State Multiplexer assembles all predictions and forms the predicted Game 

State (𝑝𝐺𝑆𝑡+1). 

5. The predicted Game State is communicated back to the server for the next iteration of Game 

State evaluation.  

6. The server uses the predicted state to compensate for the data shortfall from one or more clients  

 

Note that: 

1. The formats of both the computed and predicted GSs are the same. 

2. The server independently computes its updated Game State (GSt+1), which is solely derived 

from available CDs.  

3. The server utilises 𝑝𝐺𝑆𝑡+1 when any Client Data is missing.  

4. The online game server architecture described in this section is a reference model. The three 

engines are not a requirement for any kind of game for which the MPAI-SPG methodology is 

applied. For example, some games may not use a Physics Engine if physical-based behaviour 

is not required. 

 

 
Figure 4 – Reference Model of AI Modules of Mitigation of Data Latency effects (SPG-MDL) 

5.3 Input/Output Data 

Table 2 provides the input and output data of SPG-MDL: 

 

Table 2 - I/O Data of AI Modules of Mitigation of Data Latency effects (SPG-MDL) 

Input Description 

Game State The Game Server Game State at the preceding time instant. 

Control Data Set of players’ Control Data at current time. 

Output Description 

Game State Predicted Game State at time current time. 

5.4 Functions of AI Modules 

Table 3 provides the functions of SPG-MDL. 

 

Table 3 - Functions of AI Modules of Mitigation of Data Latency effects (SPG-MDL) 

AIM Function 

Game State Demultiplexer Demultiplexes the Game State into its components. 

AI-Physics Engine Predicts the output of the twinned Physics Engine 

AI-Rules Engine Predicts the output of the twinned Rules Engine 

AI-Behaviour Engine Predicts the output of the twinned Behaviour Engine 



Predicted Game State Multiplexer Assembles the components of the predicted Game State 

5.5 I/O Data of AI Modules 

Table 4 lists the AI Modules and the corresponding input and output data. 

 

Table 4 - I/O Data of AI Modules of Mitigation of Data Latency effects (SPG-MDL) 

AIM Receives Produces 

Game State 

Demultiplexer 

Game State 

Controller Data 

Game Message for AI-Physics Engine  

Game Message for AI-Rules Engine 

Game Message for AI-Behaviour Engine 

AI-Physics 

Engine 

Game Message for AI-Physics 

Engine  

Game Message from AI-Physics Engine  

AI-Rules Engine  Game Message for AI-Rules 

Engine 

Game Message from AI-Rules Engine 

AI-Behaviour 

Engine 

Game Message for AI-

Behaviour Engine 

Game Message from AI-Behaviour 

Engine 

Predicted Game 

State Multiplexer 

Game Message from AI-

Physics Engine  

Game Message from AI-Rules 

Engine 

Game Message from AI-

Behaviour Engine 

Predicted Game State 

5.6 Reference Software 

5.6.1 Disclaimers 

1. This SPG-MDL Reference Software Implementation is released with the BSD-3-Clause 

licence. 

2. The purpose of this Reference Software is to provide a working Implementation of SPG-MDL, 

not to provide a ready-to-use product. 

3. MPAI disclaims the suitability of the Software for any other purposes and does not guarantee 

that it is secure. 

4. Use of this Reference Software may require acceptance of licences from the respective 

repositories. Users shall verify that they have the right to use any third-party software required 

by this Reference Software. 

5.6.2 Guide to the SPG-MDL code 

The game was developed using the Unity game engine, and the networking features implemented 

through the opensource game networking library Mirror.  

The following components are provided: 

- The car racing game 

- 4 different categories of Agent Players trained using Unity’s ML-Agents library 

- The dataset used for training, generated simulating game sessions played by the Agent 

Players 

- Jupyter notebooks for training experiments and results 

- The trained models used by the AI-Behaviour Engine  

 

Available at https://experts.mpai.community/software/mpai-spg/car-racing-game/ 

https://experts.mpai.community/software/mpai-spg/car-racing-game/


Registration is required to access the repository. Details on how to use all the material is provided 

in the repository’s README page.  

 

6 Process Description and Application 

6.1 Process Outline 

The process is defined as a series of steps to follow, where the key steps needed to design and 

implement an MPAI-SPG model are described. The first 4 steps are required to outline the game 

setup to allow more informed decisions for the implementation of SPG. 

 

1. Select the game. 

2. Define the Entities (to enable parameters identification): 

a. Environment 

b. Human-controlled players (HPC) and Non-player characters (NPC) 

3. Define the Game State and relevant Entities. 

4. Design training dataset. 

5. Collect training dataset. 

6. Train prediction models: 

a. define viable architectures 

b. define the training parameters 

c. compare training results of different architectures 

7. Implement SPG. 

8. Evaluate SPG to select the model yielding the best predictions. 

9. Implement modules which simulate the disturbances. 

10. Evaluate the SPG enabled game experience with human players. 

 

For each step, high level guidelines are provided to outline the actions required. In addition, for 

each step, an example of how the guidelines should be followed are described using a car racing 

game as a use case. 

6.2 Step 1 - Select a Game 

6.2.1 Guidelines 

SPG can be applied to any kind of multiplayer online game with the sole requirement that the 

networking architecture is based on an authoritative server. To function properly, the server must 

be able to correctly interpret and process the predicted game states received from SPG. Therefore, 

the server logic must be accessible to the developer as changes to the source code are required. 

6.2.2 Example Game 

The example game is a 3D multiplayer car racing video game where both the client and the server 

logic have been developed from scratch. In the game, each client runs a local game instance which 

sends the Spatial Attitude (SA) of the controlled car to the server by means of Client Data (CD). 

The server then processes the CD from all connected clients and computes GSt+1, essentially an 

aggregate of the SAs of all vehicles.   



6.3 Step 2 - Define the Entities 

6.3.1 Guidelines 

Entities are the building blocks of the game's environment and gameplay mechanics. They include 

any object or character within the game world that can interact with other objects or characters. 

The objective of this step is to identify how Entities affect the Game State to single out which of 

them will benefit from predictions. This is done by analysing the selected game and identifying all 

the Entities that are part of the game design and environment. 

6.3.2 Example Game 

The racing videogame has two types of game Entities: the immutable ones which populate the 

environment, and the cars. They can be either Human Playable Characters (HPC) or Non-Playable 

Characters (NPCs). 

 

Environment 

The Environment is the virtual space where the game takes place. For the considered game, it 

corresponds to the racetracks where the cars drive. Racetracks are built by combining different 

predefined Tiles; thus, any racetrack can be seen as an array of tiles (Figure 5). Each Tile is 

characterised by the following properties: 

1. Tile’s type: specifies the shape of the Tile (i.e. turn right, straight) 

2. Tile’s rank: corresponds to the index of the racetrack array associated with the Tile (i.e. the 

first Tile has rank 0, the fourth Tile has rank 3, etc.). 

 
Figure 5 – Modular tiles and an example of a racetrack 

Racetracks contain multiple Checkpoints, i.e., a marked location on the track, arranged in an 

ordered sequence. Each car must pass through a Checkpoint to ensure they are following the 

correct path. To complete a lap, a car must pass through each Checkpoint in the right order. 

 

HPC/NPC  

In the considered game, cars are the only playable Entities. The player’s input is captured from a 

keyboard and controls the vehicle’s acceleration, brakes, and steering, ultimately updating its SA. 

The three inputs are integers values which can have the following values: 

- Acceleration: 0 or 1 

- Brakes: 0 or 1 



- Turning: -1, 0, or 1 

 

Cars can collide with other cars and with the walls of the racetrack. The physical simulation is 

allocated to the Game Server’s Physic Engine. 

6.4 Step 3 - Identify the relevant Game State Entities and their properties 

6.4.1 Guidelines 

To make Predictions, it is required to identify the minimal set of Entities and their properties 

affecting the Game State. These Entities and properties should be carefully selected to achieve a 

balance between Prediction accuracy and Model complexity since the Model will be required to 

operate in real-time. This selection could result from an iterative process evaluating the outcomes 

validated during the following steps in the procedure.  

6.4.2 Example Game 

The Game State is affected by: 

- The aggregation of the Spatial Attitudes of all cars. 

- The next Checkpoint each car must traverse. 

- Each car’s lap number. 

 

The car’s Spatial Attitude was considered as the minimal required data to accurately predict the 

next Game State. In this context, the predicted data are only processed by the Behaviour Engine. 

6.5 Step 4 – Training Dataset Design  

6.5.1 Guidelines 

In an ideal scenario, the entire Game State can be used as an input vector for predicting the desired 

properties defined in the previous step. However, the time required to compute a prediction (TC) 

can be affected by the number of parameters included in the input vector. Therefore, if TC exceeds 

the computational time available in a single game update cycle (16 ms in the best case), a subset 

of the entire Game State must be selected.  

 

At this stage it is difficult to make an informed decision on the game state elements that should be 

retained in the subset. Therefore, the selection of game state elements should be extended to cover 

all those elements which could contribute to the Game State Prediction. Once these elements have 

been defined, a dataset is needed for training the Neural Network Model. Data may be obtained 

from already available datasets or should be produced. In the latter case, two approaches are 

possible: collect data from humans playing the game or rely on AI agents trained to imitate human 

player behaviour, including the fact that players have different abilities and styles. 

 

The selection of the most effective GS subset must be assessed from the prediction accuracies 

evaluated in the next steps of the procedure. Therefore, the definition of the final GS subset may 

require an iterative process. 

6.5.2 Example Game 

The training data chosen to feed the prediction network includes the car’s Spatial Attitude and the 

surrounding environment. The environment data collected includes:  

1. The type of Tile the car is on.  

2. The Tile’s ranking relative to the other Tiles of the track (e.g. first, fourth or last tile of the 

track). 



3. The car’s position relative to the centre of the Tile. 

 

Since the game was developed from scratch, no datasets were available. Therefore, to suitably 

train MPAI-SPG, a synthetic dataset was generated by simulating game sessions with autonomous 

agents using the ML-Agents toolkit, a ML framework for Unity. This approach overcomes the 

impracticality of collecting data through extensive gameplay sessions. 

 

Autonomous agents, trained with a Curriculum Learning approach, are trained on tracks of 

increasing complexity, applying penalties for collisions with track walls or other players and for 

incorrect Checkpoint passages, and rewards for completing laps and correctly navigating through 

Checkpoints. Also, to emulate a variety of real-world driving styles, four distinct agent types 

governed by a unique set of rewards and penalties are used. Rewards were applied encouraging 

acceleration and optimal alignment to the next Checkpoint, and penalties for braking. 

6.6 Step 5 – Training Dataset Collection 

6.6.1 Guidelines 

In the case no dataset is available, one must be produced by running actual gaming sessions, played 

by either real players or AI agents. When running these sessions, the following points should be 

kept in mind: 

- Player’s abilities should have as wide a variety as possible. This guideline applies both to the 

case of real players and AI agents.   

- To ensure variability, consider different starting conditions when running the gaming sessions. 

- Define an adequate sampling frequency for the selected subset of the game state. Frequency 

selection is influenced by the game type: fast vs slow-paced style game, e.g., real time strategy 

games vs first person shooters.   

 

Keeping in mind the considerations of Step 4, it is crucial to consider the need to maintain the 

complexity of the problem at a manageable level. For instance, it is important to find the right 

balance between having a large variety of game scenarios and finding the most representative ones. 

The produced dataset must be divided into three sets: train, test and validation.  

6.6.2 Example Game 

To produce the dataset, the AI agents described in Step 4 raced over a single track in multiple 

game instances. The choice of collecting data over a single track is an example of balancing 

complexity over representativeness, as the selected track was the most complex one and included 

many possible scenarios already appearing in simpler tracks.  

 

Each game was composed of three laps, during which the Game State subset (Step 4) was sampled 

every 0.02 seconds. At the end of this process, a dataset of 2 million records was collected. The 

dataset was divided into train, validation and test sets. The train set contains half of the initial 

dataset, while test and validation sets contain 25% each. 

6.7 Step 6 – Train Prediction Models 

6.7.1 Guidelines 

In most cases, the game state evolution can be modelled as a time series. Therefore, a Neural 

Network architecture suitable for the task of predicting the Game State should be found. Possible 

candidates are LSTM, Transformer, and Diffusion Models. 

 



Once a technology has been selected, a Model should be trained using different game state element 

subsets (see Step 5). Each subset is evaluated for performance against the validation set and a pool 

of the better subsets (e.g., three or four) is identified for use in the following Steps, where their 

performance will also be evaluated in the target game. 

6.7.2 Example Game 

MPAI-SPG’s Behaviour Engine AI is designed to predict the car’s SA. The Predictions are based 

on a temporal series of previous Game States using a deep LSTM. The model consists of a deep 

LSTM network connected to a multilayer perceptron (MLP). In the network, each LSTM is 

followed by a Batch Normalization layer, except the last one. The model is depicted in Figure 6. 

 

 
Figure 6 – Neural network architecture.  

During training, the loss is measured by the Mean Square Error between the real and predicted 

car’s SA. The LSTM and MLP layers are initialized with the default values from the TensorFlow 

library. The optimiser leverages the Adam algorithm [8], with an initial learning rate (lr) of 0.001 

halved every time the validation loss plateau is reached. The batch size is 512 samples. The Model 

is trained for 100 epochs with early stopping. After completing the training, the Model parameters 

that show the lowest validation loss are saved. 

 

The Game State element subset which yielded the best results is composed of 7 elements: 

• Tile Type the car is on (1 element),  

• Tile Ranking relative to the other Tiles of the track (e.g. first, fourth or last Tile of the 

track) (1 element) 

• Position of the car relative to the centre of the Tile (2 elements) 

• Car’s velocity (2 elements),  

• Car’s rotation (1 element).   

 

Therefore, the input for the LSTM network is RSL×7, a matrix where SL stands for the length of the 

time sequence.  

 

Table 5 lists the most impactful parameters during training and their suggested values. 

 

 

 

Table 5 - Training parameters 

Property 
Acronym Min Max 

Numbers of LSTM layers 
dl 0 5 

The number of units in each LSTM layer 
nl 32 512 



Depth of the MLP dm 0 5 

Number of hidden units in the MLP nm 32 512 

Sequence Length SL 10 50 

Time between Predictions Tp 0.1 0.2 

 

In the context of this game the Mean Absolute Error (MAE) quantifies the difference between the 

predicted and the real SA. Therefore, a subset of networks which produce the smallest MAE on 

the validation is selected. By analysing the number of Epochs, it is possible to understand if a 

network overfits; this information can be used to implement Early Stopping during training. 

 

Table 6 reports the configurations and results of the four best Models trained. Each Model is 

identified by a unique ID, which will be used to reference them in the following. By comparing 

the minimum MAE achieved by the Models on the validation set, the ones with higher SL generally 

demonstrated better performance. Additionally, Models 2 and 4 share the same configuration apart 

from the SL, but Model 2 overfitted, stopping the training earlier. Among all models, Model 4 

achieved the lowest error. 

 

Table 6 - Trained models 

ID dl nl dm nm SL MAE Epochs 

1 3 64 3 64 20 0.579 100 

2 3 256 3 64 20 0.544 35 

3 1 256 0 0 40 0.569 87 

4 3 256 3 64 40 0.453 100 

6.8 Step 7 – Implement SPG 

6.8.1 Guidelines 

Ideally, TC should be equal or smaller than the clock period, as this ensures that Predictions are 

computed before a new game state is evaluated. However, this condition is not guaranteed, in case 

the SPG Engines cannot keep up with the computational load. As shown in Figure 7, two strategies 

are possible. One is to wait until the server is ready to provide the latest available data, which 

happens at multiples of the game clock period (Tg). Alternatively, the Engines can start working 

on the input data as soon as the previous computation is completed. In the first case, the training  

can be done by keeping the Prediction time constant, Tp. The second option may be more effective 

but requires that Engine be trained to make Predictions on a variable time frame. 

6.8.2 Example Game 

In the game, SPG was required to predict only the car’s SA. Therefore, only the Behaviour Engine 

AI was developed. In this context, the Game State DMUX extracts, for each car, a game message 

GMt
B*containing the environment surrounding the car and its SA, sending it to the Behaviour 

Engine AI. The engine outputs a series of 𝑝𝐺𝑀𝑡+1
𝐵∗  for each car, containing the predicted SA. These 

data are then combined by the Game State Assembler which outputs a predicted Game State 

(pGSt+1) which is forwarded to the Game Server. The first solution described above was 

implemented to account for the problem of TC exceeding the game clock period. The value of Tp 

is equal to 0.1 seconds. Therefore, the previous annotation changes in the following: 𝑝𝐺𝑀𝑡+𝑇𝑝
𝐵∗  and 

pGSt+Tp. 

 



 
Figure 7- Prediction alternatives when Tc is greater than Tp 

6.9 Step 8 – Using and Evaluating SPG Predictions 

6.9.1 Guidelines 

When using MPAI-SPG Predictions in a game environment, two possible issues may arise: 

- The MAEs measured in the training environment may differ when Predictions are applied in 

the game because the models which give the best results during training (Step 6) may not be 

the best performing (i.e., prediction accuracy) in the game.  

- The server may need to apply MPAI-SPG Predictions for several consecutive times. Whenever 

Predictions are used, they serve as input for the subsequent MPAI-SPG predictions. This 

causes error accumulating as time progresses. This behaviour will be referred in the following 

as Error Accumulation.   

 

Therefore, a pool of Models with the best results obtained in Step 6 (i.e., training environment) 

should be evaluated in the game scenario and the best performing one selected for use in the game. 

To perform this evaluation, the outputs of two simulations should be compared for each Model, 

one where Predictions are not used (i.e., the human or agent player, is in control), and another 

where SPG is in control. Data should be collected from the simulations to calculate a comparison 

metric (e.g., MAE of the SA). The comparison metric can be used to decide which Model produces 

the best Predictions overall and by analysing the metric’s evolution over time, the level of Error 

Accumulation can be assessed. This analysis will verify which of the Models from Step 6 is the 

best choice for the game environment. 

 

Also, it should be noted that if the Models have been trained with synthetic data (i.e., data collected 

from agent players), when asked to predict the Game State using human player data a domain shift 

issue could happen. Therefore, in this scenario, the same evaluation should be performed by 

comparing SPG Predictions with Entities controlled by human players. 

6.9.2 Example Game 

To identify which of the four models (trained in Step 6) has the lowest error accumulation, several 

games were run where a ghost car would invisibly run alongside an agent player’s car. The ghost 

car would normally replicate the player’s car SA and, at different intervals, it would be controlled 



by SPG predictions, applied for 1 consecutive second. During this interval the game saves the SA 

of the car controlled by the player and the car controlled by SPG predictions. The result of this 

process, repeated a few tens of times, was used to compute the MAE between position, velocity 

and orientation of the car controlled by the agent player and the car controlled by SPG predictions. 

 

The MAEs between the SPG predictions and the car driven by the agent player is shown in Figure 

8. The MAEs were normalized to the highest possible change in the position, velocity and 

orientation that a car can make in 0.2 seconds (Tp). The results reveal that Model 4 was the one 

with the highest error accumulation.  

 

Model 4, the model with the lowest validation MAE during training (Step 6), achieved the worst 

overall prediction quality between all models. Contrary to our anticipation, the other three models 

(having sequence length of 20) emerged as the top performers. Between models 2 and 1, the former 

demonstrated higher quality in the initial prediction (0 seconds), whereas Model 1, starting from 

the second prediction (0.2 seconds), showed a lower error in velocity predictions. Despite Model 

1 having the highest error in orientation, the impact is mitigated by the lower magnitude of the 

rotation error. In fact, Model 1 attains the lowest error on the position evaluation. 

 

 
Figure 8 - Normalized Position, Velocity and Orientation MAEs between the agent and the SPG 

predictions for the four models trained in Step 6. 

The second experiment was conducted keeping all conditions but replacing the agent player with 

human players, 12 of which played 2 laps and using only Model 1 to compute the SPG predictions. 

The objective was to assess how well SPG was able to predict missing data when the player was a 

human. Figure 9 shows that the accumulated error of the Position and Velocity after 1 second was 

about 1.5 times (blue line) the error of the agent player (green line). The performance of the 

Orientation on the human and agent players was about the same. 

 

 
Figure 9 - Normalized Position, Velocity and Orientation MAEs between the human and the SPG 

predictions using Model 1. 



6.10 Step 9 – Simulate Disturbance 

6.10.1 Guidelines 

The experiments in the previous step aimed at evaluating the prediction accuracy of the trained 

models to select the better performing one. Once identified, SPG should be evaluated (using the 

identified model) in an actual online multiplayer scenario. Since SPG activates in case of missing 

data due to network issues, this condition should be simulated. This simulation can be achieved at 

two levels: 

- Application Level: the application (the game) purposely does not send data (client) or 

discards it (server).  

- Network Level: actual network issues (latency or packet loss) are simulated outside the 

application environment. 

6.10.2 Example Game 

In the example game, network disturbance was simulated at the application level. This was 

achieved by developing a discard module, in charge of discarding client data on the server. This 

module was controlled by two parameters: discard length, the number of consecutive seconds 

where data is discarded, and discard interval, the seconds between discard sequences. Different 

values of these parameters establish three Discard Levels (DLs), summarized in Table 7. 

 

Table 7 - Discard Level Parameters 

DL Length (s) Interval (s) 

DL1 0 0 

DL2 0.3 10 +/- 2 

DL3 0.6 8 +/- 2 

6.11 Step 10 – SPG Qualitative Assessment 

6.11.1 Guidelines 

As a final step the gaming experienced by human players must be assessed. Human players should 

play the game under two conditions: no network disturbances (i.e., no predictions are computed 

and used by SPG) and simulating disturbances with SPG active to compensate for missing data. 

Several game runs should be performed under both conditions and at the end of each condition 

players should be asked to fill out a questionnaire addressing the following key points: 

1. Perception of anomalous behaviour from player-controlled and game-controlled entities 

2. Perceived game responsiveness to players’ inputs 

3. Overall gaming experience 

These key points apply to all games, but the questionnaire may address other game-dependent key 

points.  

 

Depending on the availability of human players, the game may be played by some human and 

some agent players.   

 

To further evaluate the impact of SPG, a third condition can be tested with simulated disturbances 

but without SPG correction. 

6.11.2 Example Game 

In the example game the qualitative assessment involved gaming sessions where: 

- One human player raced against other 4 agent players.  



- Each agent player was executed on a separate process instance and connected as client to 

the server 

- Only the 4 agent players were affected by simulated network issues, using the discard 

module described in Step 9. 

 

The human player completed several game sessions under two conditions: absence and presence 

of network issues. In the latter condition two Discard Levels (DL1 and DL2 from Table 7) were 

used. At the end of each game session the player filled a questionnaire composed of the following 

questions (aimed at addressing the key points described in the guidelines): 

- Q1: How would you rate your gaming experience in this match? 

- Q2: How would you rate the responsiveness of the inputs? 

- Q3: How many anomalous behaviours did you encounter during the match? 

 

The results summarised in Figure 10 show that between the no network issues (blue bar) case and 

network issues with DL1 level (orange bar) there is a very small difference for the Game 

Experience and Responsiveness scales, while for DL2 (green bar) the difference is more evident. 

On the other hand, the perception of odd behaviours (green bar) increases in DL1 and DL2, 

however remaining below 3 on a scale of 5. 

 
Figure 10 - Questionnaire results. 

 

 

 



Annex 1 - General MPAI Terminology 

Capitalised Terms not already included Table 1 are defined in Table 8. To concentrate in one place 

all the Terms that are composed of a common name followed by other words (e.g., the word Data 

followed by one of the words Format, Type, or Semantics), the definition given to a Terms 

preceded by a dash “-” applies to a Term composed by that Term without the dash preceded by the 

Term that precedes it in the column without a dash. 

 

Table 8 - MPAI-wide Terms 

Term Definition 

Access Static or slowly changing data that are required by an application such 

as domain knowledge data, data models, etc. 

AI Framework (AIF) The environment where AIWs are executed. 

AI Model (AIM) A data processing element receiving AIM-specific Inputs and 

producing AIM-specific Outputs according to according to its 

Function. An AIM may be an aggregation of AIMs. 

AI Workflow (AIW) A structured aggregation of AIMs implementing a Use Case receiving 

AIW-specific inputs and producing AIW-specific outputs according 

to the AIW Function. 

Application Standard  An MPAI Standard designed to enable a particular application 

domain. 

Channel A connection between an output port of an AIM and an input port of 

an AIM. The term “connection” is also used as synonymous. 

Communication The infrastructure that implements message passing between AIMs. 

Component One of the 7 AIF elements: Access, Communication, Controller, 

Internal Storage, Global Storage, Store, and User Agent 

Composite AIM An AIM aggregating more than one AIM. 

Component One of the 7 AIF elements: Access, Communication, Controller, 

Internal Storage, Global Storage, Store, and User Agent 

Conformance The attribute of an Implementation of being a correct technical 

Implementation of a Technical Specification. 

- Testing The normative document specifying the Means to Test the 

Conformance of an Implementation. 

- Testing Means Procedures, tools, data sets and/or data set characteristics to Test the 

Conformance of an Implementation. 

Connection A channel connecting an output port of an AIM and an input port of 

an AIM. 

Controller A Component that manages and controls the AIMs in the AIF, so that 

they execute in the correct order and at the time when they are needed 

Data Information in digital form. 

- Format The standard digital representation of Data. 

- Type An instance of Data with a specific Data Format. 

- Semantics The meaning of Data. 

Descriptor Coded representation of a text, audio, speech, or visual feature. 

Digital Representation Data corresponding to and representing a physical entity. 



Ecosystem The ensemble of actors making it possible for a User to execute an 

application composed of an AIF, one or more AIWs, each with one or 

more AIMs potentially sourced from independent implementers. 

Explainability The ability to trace the output of an Implementation back to the inputs 

that have produced it. 

Fairness The attribute of an Implementation whose extent of applicability can 

be assessed by making the training set and/or network open to testing 

for bias and unanticipated results. 

Function The operations effected by an AIW or an AIM on input data. 

Global Storage A Component to store data shared by AIMs. 

AIM/AIW Storage A Component to store data of the individual AIMs. 

Identifier A name that uniquely identifies an Implementation. 

Implementation 1. An embodiment of the MPAI-AIF Technical Specification, or 

2. An AIW or AIM of a particular Level (1-2-3) conforming with a 

Use Case of an MPAI Application Standard. 

Implementer A legal entity implementing MPAI Technical Specifications. 

ImplementerID (IID) A unique name assigned by the ImplementerID Registration Authority 

to an Implementer. 

ImplementerID 

Registration Authority 

(IIDRA) 

The entity appointed by MPAI to assign ImplementerID’s to 

Implementers. 

Instance ID Instance of a class of Objects and the Group of Objects the Instance 

belongs to. 

Interoperability The ability to functionally replace an AIM with another AIW having 

the same Interoperability Level 

- Level The attribute of an AIW and its AIMs to be executable in an AIF 

Implementation and to:  

1. Be proprietary (Level 1) 

2. Pass the Conformance Testing (Level 2) of an Application 

Standard 

3. Pass the Performance Testing (Level 3) of an Application 

Standard. 

Knowledge Base Structured and/or unstructured information made accessible to AIMs 

via MPAI-specified interfaces 

Message A sequence of Records transported by Communication through 

Channels. 

Normativity The set of attributes of a technology or a set of technologies specified 

by the applicable parts of an MPAI standard. 

Performance The attribute of an Implementation of being Reliable, Robust, Fair and 

Replicable. 

- Assessment The normative document specifying the Means to Assess the Grade of 

Performance of an Implementation. 

- Assessment Means Procedures, tools, data sets and/or data set characteristics to Assess the 

Performance of an Implementation. 

- Assessor An entity Assessing the Performance of an Implementation. 

Profile A particular subset of the technologies used in MPAI-AIF or an AIW 

of an Application Standard and, where applicable, the classes, other 

subsets, options and parameters relevant to that subset. 

Record A data structure with a specified structure 



Reference Model The AIMs and theirs Connections in an AIW. 

Reference Software A technically correct software implementation of a Technical 

Specification containing source code, or source and compiled code.  

Reliability The attribute of an Implementation that performs as specified by the 

Application Standard, profile, and version the Implementation refers 

to, e.g., within the application scope, stated limitations, and for the 

period of time specified by the Implementer. 

Replicability The attribute of an Implementation whose Performance, as Assessed 

by a Performance Assessor, can be replicated, within an agreed level, 

by another Performance Assessor. 

Robustness The attribute of an Implementation that copes with data outside of the 

stated application scope with an estimated degree of confidence. 

Scope The domain of applicability of an MPAI Application Standard 

Service Provider An entrepreneur who offers an Implementation as a service (e.g., a 

recommendation service) to Users. 

Standard A set of Technical Specification, Reference Software, Conformance 

Testing, Performance Assessment, and Technical Report of an MPAI 

application Standard.  

Technical 

Specification 

(Framework) the normative specification of the AIF. 

(Application) the normative specification of the set of AIWs belonging 

to an application domain along with the AIMs required to Implement 

the AIWs that includes: 

1. The formats of the Input/Output data of the AIWs implementing 

the AIWs. 

2. The Connections of the AIMs of the AIW. 

3. The formats of the Input/Output data of the AIMs belonging to the 

AIW. 

Testing Laboratory A laboratory accredited to Assess the Grade of  Performance of 

Implementations.  

Time Base The protocol specifying how Components can access timing 

information 

Topology The set of AIM Connections of an AIW. 

Use Case A particular instance of the Application domain target of an 

Application Standard. 

User A user of an Implementation. 

User Agent The Component interfacing the user with an AIF through the 

Controller 

Version A revision or extension of a Standard or of one of its elements. 

Zero Trust A cybersecurity model primarily focused on data and service 

protection that assumes no implicit trust. 

 

 


