

MPAI Basics

Leonardo Chiariglione 2025/02/12 T15:00 UTC

- MPAI Moving Picture, Audio and Data Coding by Artificial Intelligence is an international, unaffiliated, non-profit association based in Geneva
 - With the mission to promot the efficient use of Data by:
 - Developing Technical Specifications for
 - Coding of any type of Data, especially using new technologies such as AI, and
 - Technologies that integrate Data Coding components in ICT systems, and by
 - Bridging the gap between Technical Specifications and their practical use through the development of Intellectual Property Rights Guidelines ("IPR Guidelines"),.
- MPAI operates based on open international collaboration of interested parties supporting the MPAI mission and the means to accomplish it.

Explainable standards

2/13/2025

Technical Specification: AI Framework (MPAI-AIF) V2.1

AIF enables dynamic configuration, initialisation, execution, and control of an AIW

Accessible & timely available standards

Before initiating a standard, <u>Active Principal Members</u> **develop & adopt** its Framework Licence (FWL), a licence without values: \$, %, dates etc. declaring that the eventual licence will be issued

- 1. Not after products are on the market.
- 2. At a price comparable with similar standard technologies.

During the development, <u>any Member</u> making a contribution **declares** it will make its licence available according to the FWL.

After the development, <u>Members holding IP</u> in the standard select the preferred patent pool administrator.

Read the MPAI Patent Policy

Rigorous standards development process

The results, so far

Acronym	Name	TS	RS	СТ	PA	IEEE
MPAI-AIF	AI Framework	Х	х			3301-2024
MPAI-CAE	Context-based Audio Enhancement	х	х	х		(3302-2024)
MPAI-CAV	Connected Autonomous Vehicle					3307-2024
MPAI-CUI	Compression and Understanding of Financial Data	х	х	х	х	
MPAI-GME	Governance of the MPAI Ecosystem	х				
MPAI-HMC	Human and Machine Communication	х				
MPAI-MMC	Multimodal Conversation	х	х	х		3300-2024
MPAI-MMM	MPAI Metaverse Model	х				3305-2024
MPAI-NNW	Neural Network Watermarking	х	х			3304-2023
MPAI-OSD	Object and Scene Description	х				(3308-2024)
MPAI-PAF	Portable Avatar Format	х				3306-2024
MPAI-PRF	AI Module Profiles	х				
MPAI-SPG	Server-based Predictive Multiplayer Gaming	x	x			
MPAI-TFA	Data Types, Formats and Attributes	х				

0-0-

7 **community**

Plans for new and extended standards

Acronym	Name
MPAI-AIH	AI for Health
MPAI-CAE	Context-based Audio Enhancement (6 Degrees of Freedom)
MPAI-CAV	Connected Autonomous Vehicle (Technologies)
MPAI-CUI	Compr. & Underst. of Financial Data (Company Perfom. Prediction)
MPAI-EEV	AI-Enhanced Video Coding
MPAI-EVC	End-to-End Video Coding
MPAI-MMC	Multimodal Conversation (Perceptive and Agentic AI)
MPAI-MMM	MPAI Metaverse Model (Integration of Architecture & Technologies)
MPAI-NNW	Neural Network Watermarking (new applications)
MPAI-TFA	Data Types, Formats and Attributes (new data types)
MPAI-XRV	XR Venues

Al.

community

8

We look forward to working with you in MPAI projects!

https://mpai.community/standards/

Join MPAI Share the fun Build the future

MPAI-SPG MDL

Server-based Predictive Multiplayer Gaming (MPAI-SPG) – Mitigation of Data Loss

Francesco Strada – Politecnico di Torino

Online Multiplayer Gaming

Online Multiplayer Gaming

Network architectures: Authoritative Servers vs Peer to Peer

Authoritative servers is among the most widespread

Online Multiplayer Gaming - Problems

The server's game state shared version can be corrupted

- Data loss
- Latency
- Data corruption

Online Multiplayer Gaming - Solutions

Several techniques to mitigate/compensate network issues [1]

- Time Delay (Server)
- Time Warp (Server)
- Client <u>Prediction</u> (Client)

[1] L. Shengmei, X. Xiaokun e M. Claypool, «A survey and taxonomy of latency compensation techniques for network computer games,» ACM Computing Surveys (CSUR), pp. 1-34, 2022

14

SPG MDL

Server-Side Prediction (SPG) – Mitigation Data Loss (MDL)

Server Side -> guarantees consistency and QoE for all clients

- Prediction -> AI-based
- Data Loss -> missing data or delayed data

SP/G – Reference Model

SP/G – Process Guidelines

SPG MDL - Process Guidelines

• Games are intrinsically very different from one another as they have different:

- Mechanics
- Entities
- Rules
- Defining a standard that fits all of them is almost impossible
- We decided to define a <u>Process</u> which should serve as <u>Guidelines</u>, documenting it in a Technical Report

SPG MDL - Process Guidelines Technical Report

- The process is composed of 10 steps, where we provide:
 - High Level Guidelines (WHAT you should do)
 - Implementation Example (HOW we did it)
- The example is provided in the form of a multiplayer car racing game

SPG MDL - Process Guidelines

- 1.Select the game
- 2.Define the Entities (to enable parameters identification)
- 3. Define the Game State and relevant Entities
- 4. **Design training** dataset
- 5. Collect training dataset

- ► 6. **Train** prediction models
- ► 7. Implement SPG
- 8. Evaluate SPG to select the model yielding the best predictions
- 9. Implement modules which simulate the disturbances
- 10. Evaluate the SPG enabled game experience with human players

SPG MDL - (1) Select the Game

<u>Guideline</u>

SPG can be **applied to any** multiplayer online game (authoritative server).

SPG must be embedded in the game -> having access to the source code is a requirement

Car Racing Game

An example game was developed from scratch

SPG MDL - (2) Define Entities

Guideline

Identify how Entities affect the Game State to single out which of them will benefit from predictions.

Car Racing Game

Cars controlled by players racing along the track

SPG MDL - (3) Define Game State

<u>Guideline</u>

- Identify minimal set of Entities and their properties affecting the Game State
- Achieve a balance between Prediction accuracy and Model complexity

SPG MDL - (3) Define Game State

- The car's Spatial Attitude (SA): Position, Orientation, Velocity and Accelleration
- Composing each car's SA the entire Game Sate can be reconstructed

SPG MDL - (4-5) Training Dataset

Guideline

(?) Data available -> exploit existing dataset

(?) No available dataset -> create one

Human Player -> real game sessions (- convenient + accurate)

Al Agent Player -> simulated game (+ convenient - accurate)

SPG MDL - (4-5) Training Dataset

- Exploited autonomous Agent Players to simulate numerous game sessions and collected 2 million records (50% train, 25% test, 25% validation)
- Each record is a sample containing:
 - Car's SA (entity data)
 - Car's relative position on the tile (environment data)

SPG MDL - (6) Train Prediction Models

<u>Guideline</u>

- Time series prediction -> select a Neural Network model suitable for the task
- Train several networks exploiting:
 - Different input vectors
 - Different hyperparameter
- Select a subset of the n (e.g., 4) best networks -> lower mean absolute error

SPG MDL - (6) Train Prediction Models

- Used a deep LSTM as NN
- Input: vector of N containing car's SA + environment data from present and past
- Output: car's SA
- Selected a subset of the 4 best

Val MAE	SL	n _m	d _m	n	dı	ID
0.579	20	64	3	64	3	1
0.544	20	64	3	256	3	2
0.569	40	0	0	256	1	3
0.453	40	64	3	256	3	4

Implement the SPG predictions in the game

- Two possible issues:
 - Prediction accuracy (MAE) different between training and game

Error Accumulation -> when the input vector contains predicted data

Implement the SPG predictions in the game

- Two possible issues:
 - Prediction accuracy (MAE) different between training and game

Error Accumulation -> when the input vector contains predicted data

Implement the SPG predictions in the game

- Two possible issues:
 - Prediction accuracy (MAE) different between training and game
 - Error Accumulation -> when the input vector contains predicted data

Implement the SPG predictions in the game

- Two possible issues:
 - Prediction accuracy (MAE) different between training and game

Error Accumulation -> when the input vector contains predicted data

Implement the SPG predictions in the game

- Two possible issues:
 - Prediction accuracy (MAE) different between training and game

Error Accumulation -> when the input vector contains predicted data

SPG MDL - (7-8) Implement and Evaluate SPG Car Racing Game

Implemented the Behaviour Engine AI

- Implemented the Behaviour Engine AI
- Computed MAE for all 4 model from the pool
- Assessed the degree of Error Accumulation

SPG MDL - (7-8) Implement and Evaluate SPG Car Racing Game

- Implemented the Behaviour Engine AI
- Computed MAE for all 4 model from the pool
- Assessed the degree of Error Accumulation

Al-Driver

- Implemented the Behaviour Engine AI
- Computed MAE for all 4 model from the pool
- Assessed the degree of Error Accumulation

- Implemented the Behaviour Engine AI
- Computed MAE for all 4 model from the pool
- Assessed the degree of Error Accumulation

- Implemented the Behaviour Engine AI
- Computed MAE for all 4 model from the pool
- Assessed the degree of Error Accumulation

SPG MDL - (9) Simulate Disturbance

<u>Guideline</u>

- Simulate SPG working environment: missing/delayed data due to network issues
- Disturbance simulation:
 - Application Level
 - Network Level

SPG MDL - (9) Simulate Disturbance

- Disturbance simulated at the Application Level
- Implementation of a Discard Module
 - Length
 - Interval

DL	Length (s)	Interval (s)
DL1	0	0
DL2	0.3	10 +/- 2
DL3	0.6	8 +/- 2

SPG MDL - (10) Evaluate Game Experience

- Perform a user study (with Human Players) under 2 conditions:
 - ► (1) no network disturbance
 - (2) simulated disturbance with SPG active to compensate
- Collect Qualitative Data addressing:
 - Perception of anomalous behaviors
 - Game responsiveness
 - Overall gaming experience

SPG MDL - (10) Evaluate Game Experience Car Racing Game

Conducted a user study involving 12 participants

SPG MDL – Future Works

- Test different models -> for example diffusion models instead of LSTM
- Extensive testing with real players
- Real player data collection -> for a refined dataset
- Instead of game state prediction, use AI agents as forecasters to take over when data is missing

SPG MDL - Thanks to

- Leonardo Chiariglione
- Marco Mazzaglia (Tiny Bull Studio)
- Davide Cavagnino & Maurizio Lucenteforte (University of Turin)
- HPC4AI <u>https://hpc4ai.unito.it/</u> (University of Turin)
- Antonio Guarino & Giorgio Gamba (University of Turin)
- Daniele Spina (Politecnico di Torino)

