Moving Picture, Audio and Data Coding

>)

> M PAI & by Artificial Intelligence
community WWW.mpai.community

MPALI Technical Specification

Artificial Intelligence Framework
MPAI-AIF

V2.2

WARNING

Use of the technologies described in this Technical Specification may infringe patents, copyrights
or intellectual property rights of MPAI Members or non-members.

MPALI and its Members accept no responsibility whatsoever for damages or liability, direct or
consequential, which may result from the use of this Technical Specification.

Readers are invited to review Notices and Disclaimers.

© Copyright MPAI 2020-2025. All rights reserved.

https://mpai.community/about/notices-and-disclaimers/

D AW —

6

Technical Specification
Artificial Intelligence Framework (MPAI-AIF) V2.2

FOT@WOTA ...ttt ettt e b e ettt et sbe e b eae 3
INEFOAUCTION ...ttt ettt et s e e b e st ebeesateebeeeas 6
N TeT0] oL PRSPPIt 7
DIETINITIONS ...ttt ettt et e a e et e s bt e et e e sate e bt e sieeenbeesaneebeans 7
RETETEICES ...ttt ettt ettt st sbe et et sbe e b eaee 9
5.1 NOTMAIVE TETRIETICES ..uuviiuiieiiiiiie ettt ettt et et e st eaee e 9
5.2 INfOrmative TETETENCES.eeiiiuieiirieiieteee ettt et 10
ATCRITECTULE ...ttt ettt ettt et e sat e e bt e s et e et esat e e bt e enbeeseesanean 11
6.1 Al Framework COMPONENLScc.eeruiiiiieriieeiieiiieeteesieeeteesiteeteeseeeereesaeeeseesaesnseenseenns 11
6.1.1 Components for Basic FUNCtionalitiesccceeeireeiiieriiieeieecee e 11
6.1.2 Components for Security FUnctionalities..........c.cccvervieriienieeiienieeieeeie e 13
6.2 Al Framework Implementationscceeecuiiieiiiieeiiieeeiie et 14
6.3 AT MOGUIES....c.eeteieeitesee ettt ettt et sttt ettt ettt sat et enreeaeen 14
6.3.1 IMPIemMENTAION LYPES ..vveeeerieieirieeeiiieeeiieeeiteeeeiteeeieeeetaeesteeesteeesseeessseeessseeensseeesseens 14
0.3.2 COMDINATION ...ttt ettt ettt e at e sae et st sat et et e saeebe et e saeenaeenee 15
6.3.3 Hardware-software compatibility..........ccccveiiiiiiiiiiieiiiece e 15
6.3.4 Actual IMPlemeEntatioNS.ccueeeiierieeiiieiie et erte ettt et eseeeebeesaeebeesbeensaesnsaeseees 15
A, 1] 16 - 1 RSP PPRRUURPRRPRRNt 16
7.1 Communication channels and their data typesccceeveeeiieriiiieeeiieeeecrecee e 16
To11 TYPE SYSLEIMLu..uuiiiiiiiiiiiie ettt ettt ettt e et e e st e e st e s it e sbbeeeaaee s 16
7.1.2 Mapping the type to buffer CONtents.cccvveviiiiiieriieiiecieeeeeee e 17
7.2 ATF MeEtadata.......oeeiiiiieiieeciieeeiee ettt ettt e e e e et e e aa e e e eareeeabaeeabeeenaeeenneean 17
7.3 ATW/AIM MEtAALA ..ottt sttt 18
APT CONVENTIONS ..e.uviieiiiieciieeeiie ettt e et e e e tteesteeeeteeestaeesssseesssaeessseeesssaeessseeessseeessseeessseesnns 18
8.1 F N o 185 o 1RO 18
8.2 REIUIM COUCS ..ttt ettt st et e sae et sae et e 18
8.3 High-priority MESSAZESccccuviieiiieiiieeeiieeeiee e ettt esiteesaeeesaeeesaeeesaeeessseeesseeensseessseens 19
BaSIC AP ettt sttt et naeen 19
9.1 Store API called by Controller.........cccueveiiiiiiiieiiie et e 20
0.1.1 Getand parse arChiVecooieiiiiiieeiieie ettt ettt see e 20
9.2 Controller API called by User AGEntc..ceevuiieeiiiieeiieeeiieeeieeeeiee et eree e 20
0.2.1 GENETAL ..ttt sttt 20
9.2.2 Start/Pause/Resume/Stop Messages to other AIWSccccvveviieiiiieniieeiieeeeee, 20
9.2.3 Inquire about state of AIWS and AIMScccoeeiiriiieniieiienieeeeeee et 21
9.2.4 Management of Shared and AIM Storage for AIWS.......ccceevvvievciieniieecieeeeeee, 21
9.2.5 2.5 Communication MANAZEMENL..........cccuierrieeriierrreeiienreesieesreeseeneeenseessseeseenns 21
9.2.6 Resource allocation ManagemMeENt...........cccueeerureeeiireeriieeeiieeeieeesieeesaeeesseeessveeensneens 22
9.3 Controller APT called by AIMSooiuiiiiiiiieeiieie ettt ettt s 22
0.3.1 GNETAL ..ttt ettt ettt e ae 22
9.3.2 Resource allocation ManagemMeENt...........cc.ueeruierieriiierieeiieneeesieeseeeseesseesseesseesseens 22
9.3.3 Register/deregister AIMs with the Controller...........ccceeeiieeiiieniiienieeeee e 23
9.3.4 Send Start/Pause/Resume/Stop Messages to other AIMScccceeeviveriienieniiiennnen. 23
9.3.5 Register Connections between AIMS........c.ccocviiiiiieeiieecie e e 24
0.3.0 USING POTLS ...eeiiieiieiieeiieeie ettt ettt ettt te e st eesbeessaeessaessseenbeessseensaesnsaenseanns 24
0.3.7 OPErations ON MESSAZESeeerrveeerrrrerrrreerrureeessreeassseesssseesssseesssseesssseesssessssseesssseeessees 25

9.3.8 Functions specific to machine learning............cccoeeuveeeieiiienieenienieeeeeie e 26

9.3.9 Controller API called by Controller..........cccevveriiiiiiiniiniiiieeeeeeeee e 27

TO SECUITLY AP ...ttt et e e et e e et e e st e e s sbeeensbaesenseeennseesnseeenseenn 27
10.1 Data characterisation StIUCTUIEccvieeeiieeiiieeiieeeciteeeieeeeieeeereeeeaeeesseeeseseeensneeenns 28
10.2 API called DY USET AENL...c.eiiiiiiiieiieiieeiieriie ettt ettt ereeseeeaeessveessaeenbeeseeesseenees 28
10.3 API t0 acCESS SECUIE SOTAZEc.uveeuiieiiieiiiiieeiie ettt s 28

10.3.1 User Agent initialises Secure Storage APlL.........cccvieiiiiiiiiciieee e, 28
10.3.2 User Agent writes Secure Storage APcoooviiiiiiiiiiieiiece e 28
10.3.3 User Agent reads Secure Storage APL..........ooooviieiiiieniiie e 29
10.3.4 User Agent gets info from Secure Storage APccocooiiiiiiiiiiiiiieiee e 29
10.3.5 User Agent deletes a p_data in Secure Storage APIccoeveviieiiieinciieeiieeiee e, 29
10.4 AP t0 acCeSS AttEStAtION. ...c..eiuiiriiiiieiiiieetert ettt sttt st 29
10.5 API to access cryptographic fUNCHIONSc.eeeeviiiiiiiieeiieeciie et 29
LO.5.T HASRING....eieiiiiiieiie ettt ettt et e et e et e st e e bt e s abe e seesnbeebeaens 29
10.5.2 5.2 Key Management........cccccuiieiiiiiiiieeeiiiieeeeniiteeeeiteeeeeirteeeesiteeeesnanreeessnnneeeeens 29
10.5.3 KeY EXChANGEooviieiiiiiiiiiieeiie ettt ettt ettt sae e eseae e saeenseesae e 31
10.5.4 Message Authentication Code..........cevvuiieriiieiiiieiieieciee et eeeaee e 31
LO.5.5 CYPRETS ..ttt ettt ettt et e st e et e s eeseeeaae e bt e s nbeeseeenbeenneeens 31
10.5.6 Authenticated encryption with associated data (AEAD)cccovveevieevieeeniieeieeee, 32
L0.5.7 SIZNATUTE....cuiiiiieiieeieeeiie ettt et e ete et e stteebeessbeeseesaseesseessseeseesnseenseesnseenseesnseenseanns 32
10.5.8 ASymmetriC ENCIYPHONuviiiiiieiiiieciie ettt e e 32
10.6 API to enable secure COMMUNICALIONccuerieriierieriienieeieeie sttt saeens 33

L1 PLOTILES ettt ettt ettt e bt e et e beesane s 33
T1.1 0 BaSic Profile cueeiiiiiieeieceee et 33
11.2 SeCUIE Profileooiiiiiiiiieeee et 33

L D 1 7 T) o1 PSPPSR 33

L T o5 € ' 11) (1SR 33
13.1 AIF IMPlemMENtations.......c.cevuieeiieriieeieerieeeieesieeeteesieeebeesseeeseessseesseessseesaessseesseessseensns 33

13.1.1 Resource-constrained implementationcccceeeveierieeerieeesiee e evee e 33
13.1.2 Non-resource-constrained implementationccccueeveerieerieeiieenieeieeneeeveenieens 34
13.2 EXAMPIES O LYPES .evviieiiiieeiie ettt ettt e st e e et e e ssaee e saeeesseeesaseeenes 34
13.3 Examples 0f Metadata.........cccoecvieriiiiiieriieeiiecieeie ettt e sbe e e enes 34
13.3.1 Enhanced Audioconference Experience AIFccccoviiiiiieiiiiieciie e 34
13.3.2 Enhanced Audioconference Experience ATWcccooeviieiienieniiienieeieeieeieeieens 34
13.3.3 Analysis Transform AIMcoooiiiiiiiiiiiece e e e 34
13.3.4 Sound Field Description AIMccccciieeiieiiieniieiieeie et eniee e ereesre e sveesaee e 34
13.3.5 Speech Detection and Separation AIMccccoeeeiiieiiieeiiieeeee e 34
13.3.6 Noise Cancellation Module AIMcocooviiiiriiniiiinieceeeee e 35
13.3.7 Audio Synthesis Transform AIMccccciiiiiiiiiiiieee e 35
13.3.8 Audio Description Packaging AIM.........cccooeiiiiiiiiieiiie et 35

1 Foreword

The international, unaffiliated, non-profit Moving Picture, Audio, and Data Coding by Artificial
Intelligence (MPAI) organisation was established in September 2020 in the context of:

1.

2.
3.

Increasing use of Artificial Intelligence (Al) technologies applied to a broad range of
domains affecting millions of people

Marginal reliance on standards in the development of those Al applications
Unprecedented impact exerted by standards on the digital media industry affecting billions
of people

believing that Al-based data coding standards will have a similar positive impact on the

Information and Communication Technology industry.

The design principles of the MPAI organisation as established by the MPAI Statutes are the

development of Al-based Data Coding standards in pursuit of the following policies:

1. Publish upfront clear Intellectual Property Rights licensing frameworks.

2. Adhere to a rigorous standard development process.

3. Be friendly to the Al context but, to the extent possible, remain agnostic to the technology
thus allowing developers freedom in the selection of the more appropriate — Al or Data
Processing — technologies for their needs.

4. Be attractive to different industries, end users, and regulators.

Address five standardisation areas:

1. Data Type, a particular type of Data, e.g., Audio, Visual, Object, Scenes, and
Descriptors with as clear semantics as possible.

2. Qualifier, specialised Metadata conveying information on Sub-Types, Formats, and
Attributes of a Data Type.

3. Al Module (AIM), processing elements with identified functions and input/output
Data Types.

4. Al Workflow (AIW), MPAI-specified configurations of AIMs with identified
functions and input/output Data Types.

5. Al Framework (AIF), an environment enabling dynamic configuration, initialisation,
execution, and control of AIWs.

6. Provide appropriate Governance of the ecosystem created by MPAI Technical Specifications
enabling users to:

1. Operate Reference Software Implementations of MPAI Technical Specifications
provided together with Reference Software Specifications

2. Test the conformance of an implementation with a Technical Specification using the
Conformance Testing Specification.

3. Assess the performance of an implementation of a Technical Specification using the
Performance Assessment Specification.

4. Obtain conforming implementations possibly with a performance assessment report
from a trusted source through the MPAI Store.

Today, the MPAI organisation operated on four solid pillars:

1. The MPALI Patent Policy specifies the MPAI standard development process and the
Framework Licence development guidelines.

2. Technical Specification: Artificial Intelligence Framework (MPAI-AIF) V2.1 specifies an
environment enabling initialisation, dynamic configuration, and control of AIWs in the
standard Al Framework environment depicted in Figure 1. An Al Framework can execute Al
applications called AI Workflows (AIW) typically including interconnected Al Modules
(AIM). MPAI-AIF supports small- and large-scale high-performance components and
promotes solutions with improved explainability.

e

https://mpai.community/about/the-mpai-patent-policy/
https://mpai.community/standards/mpai-aif/v2-1/

N B

- Module —— Module ——
w | e — am — — |2
2 -5
o Al c
c AIM/AIW Storage | —> — -
- _— (non-secure) —=> Module ——> > @

(AIM) AL

AIM/AIW Storage —= Module ——=

(secure) — (AIM) [5

Controller (Non-secure/Secure)

MPAI
Store

SAL
Communi- Global o
cation Storage ceess

Figure 1 — The Al Framework (MPAI-AIF) V2 Reference Model

3. Technical Specification: Data Types, Formats, and Attributes (MPAI-TFA) V1.2 specifies

Qualifiers, a type of metadata supporting the operation of AIMs receiving data from other

AlMs.

Qualifiers convey information on Sub-Types (e.g., the type of colour), Formats (e.g.,

the type of compression and transport), and Attributes (e.g., semantic information in the
Content). Although Qualifiers are human-readable, they are only intended to be used by

AlMs.

Therefore, Text, Speech, Audio, Visual, and other Data exchanged by AIWs and

AlIMs should be interpreted as being composed of Content (Text, Speech, Audio, and Visual
as appropriate) and associated Qualifiers. Therefore a Text Object is composed of Text Data
and Text Qualifier. The specification of most MPAI Data Types reflects this point.

4. Technical Specification: Governance of the MPAI Ecosystem (MPAI-GME) V1.1 defines

the following elements:

1.

2.

3.

4,

5.

Standards, i.e., the ensemble of Technical Specifications, Reference Software,
Conformance Testing, and Performance Assessment.

Developers of MPAI-specified AIMs and Integrators of MPAI-specified AIWS
(Implementers).

MPALI Store in charge of making AIMs and AIWs submitted by Implementers
available to Integrators and End Users.

Performance Assessors, independent entities assessing the performance of
implementations in terms of Reliability, Replicability, Robustness, and Fairness.
End Users.

The interaction between and among actors of the MPAI Ecosystem are depicted in Figure 2.

MPAI

MPAI Store
Authorisation (1)

- Issues
standards

- Establishes
MPAI Store

- Authosises
Performance
Testers

Implementation (6) End User

Performance
0K {5a) Assessor
i A

Implementation (4)

Implementation (7)

Standard (3)

- Assesses
Implementation

Authorisation (2) Performance

0K (5h)

Figure 2 — The MPAI Ecosystem

https://mpai.community/standards/mpai-tfa/v1-2/
https://mpai.community/standards/mpai-gme/mpai-gme-specification/

2 Introduction
(Informative)

Technical Specification: Artificial Intelligence Framework (MPAI-AIF) V2.2 — in the
following also called MPAI-AIF V2.2 or simply MPAI-AIF — provides a standard environment
where Al Workflows (AIW) composed of Al Modules (AIM) are initialised, dynamically
configured, executed and controlled. Some AIWs can be standardised by MPALI, i.e., they
perform standardised functions, expose standard interfaces, and execute explicit computing
workflows. Other AIWs can be proprietary, provided they expose the interfaces specified by
MPAI-AIF. Developers can compete in providing AIF components — AIWs and AIMs — that
have standard functions and interfaces. These may have improved performance compared to
other implementations. AIMs can execute data processing or Artificial Intelligence algorithms
and can be implemented in hardware, software, or in a hybrid hardware/software configuration.
The MPAI-AIF specifies two Profiles: Basic and Security.
The Basic Profile has the following features:
o Independence: An AIF Implementation does not depend on the Operating System.
e Modularity: The architecture is component-based with specified interfaces.
e Encapsulation: Component interfaces are abstracted from the development environment.
e Access: An AIF Implementation can access validated Components in the MPAI Store.
o Implementation: Component can be implemented as software only, hardware only, and
hybrid hardware-software.
o Execution: An AIF Implementation can be executed in local and distributed Zero-Trust
architectures.
o Interaction: An AIF Implementation can interact with other Implementations operating
in proximity.
e Machine Learning functionalities are supported.
The Security Profile inherits the functionalities of the Basic Profile. In addition, the APIs enable
access to the following Trusted Services:
e A selected range of cyphering algorithms.
e A basic Attestation function.
e Secure Storage as RAM, internal/external flash, or internal/external/remote disk.
o Certificate-based Secure Communication.
with the following general conditions:
e An AIF Implementation can execute only one AIW containing only one AIM that may
be a Composite AIM whose components AIMs cannot access the Security API.
e The AIF Trusted Services may rely on hardware and OS security features already
existing in the hardware and software of the AIF environment.
Various actors — developers, integrators, and end users — benefit from the creation-composition-
execution-update of AIM-based workflows interconnecting multi-vendor AIMs trained to
specific tasks, operating in the standard Al framework and exchanging data in standard formats:
e Technology providers can offer standard-conforming Al technologies to an open market
e Application developers can find the technologies they need on the market.
o Innovation is fuelled by demand for novel/ more performing AI components
o Consumers have a wider choice of better Al applications from a competitive market
o Society can lift the veil of opacity from large, monolithic Al-based applications.
An AIW and its AIMs may have three Interoperability levels:
1. Level 1 — Proprietary and conforming to the MPAI-AIF Standard.
2. Level 2 — Specified by an MPAI Application Standard.
3. Level 3 — Specified by an MPAI Application Standard and certified by a Performance
Assessor.

MPALI offers Users access to the promised benefits of Al with a guarantee of increased
transparency, trust and reliability as the Interoperability Level of an Implementation moves from
1 to 3.

The chapters and sections of this Technical Specification are Normative unless they are labelled
as Informative. Terms beginning with a capital letter are defined in Table [if specific to this
MPAI-AIF Technical Specification. All MPAI-defined Terms are accessible online.

3 Scope

Technical Specification: AI Framework (MPAI-AIF) V2.2 — in the following also called
MPAI-AIF V2.2 or simply MPAI-AIF — specifies architecture, interfaces, protocols, and
Application Programming Interfaces (API) of the Al Framework specially designed for the
execution of Al-based implementations, but also suitable for mixed Al and traditional data
processing workflows.

The current version of the Technical Specification: Al Framework (MPAI-AIF) V2.2 has been
developed by the MPAI Al Framework Development Committee (AIF-DC). Future Versions
may revise and/or extend the Scope of this Technical Specification.

4 Definitions

Capitalised Terms have the meaning defined in Table 1. Lowercase Terms have the meaning
commonly defined for the context in which they are used. For instance, Table 1

defines Object and Scene but does not define object and scene.

A dash “-” preceding a Term in Table 1 indicates the following readings according to the font:

1. Normal font: the Term in the table without a dash and preceding the one with a dash
should be read before that Term. For example, “Avatar” and “- Model” will yield “Avatar
Model.”

2. Italic font: the Term in the table without a dash and preceding the one with a dash should
be read after that Term. For example, “Avatar” and “- Portable” will yield “Portable
Avatar.”

All MPAI-defined Terms are accessible online.
Table 1 — General MPAI-AIF terms

Term Definition

Access Static or slowly changing data that are required by an application such as domain knowl

Al Framework (AIF)The environment where AIWs are executed.

A processing element receiving AIM-specific Inputs and producing AIM-specific Outpt

Al Module (AIM) an aggregation of AIMs. AIMs operate in the Trusted Zone.

A structured aggregation of AIMs implementing a Use Case receiving AIM-specific inp

Al Workflow (AIW) Function. AIWs operate in the Trusted Zone.

Attestation Service A capability provided by an AIF Implementation to provide digitally signed Security tol

https://mpai.community/standards/mpai-aif/v2-2/definitions
http://dbmpai.rf.gd/
http://dbmpai.rf.gd/

Authentication
Service

Metadata
—AIF
—AIM

—AIW

Channel

Communication

Component

Composite AIM

Controller

Cypher
Data Type
Device

Encryption

— Asymmetric

— Symmetric

Event

Group Element

Hashing

Key management

Knowledge Base

Message

MPALI Ontology
MPALI Server
MPAI Store
Port

A capability provided by an AIF Implementation to verify the identity of a user, device,

Data associated to Data.
The data set describing the capabilities of an AIF as set by the AIF Implementer.
The data set describing the capabilities of an AIM as set by the AIM Implementer.

The data set describing the capabilities of an AIW as set by the AIW Implementer.

A physical or logical connection between an output Port of an AIM and an input Port of
Channels are part of the Trusted Zone.

The infrastructure that implements message passing between AIMs. Communication op:

One of the 9 elements of the AIF Reference Model: Access, AI Module, AI Workflow, (
Store, and User Agent.

An AIM aggregating more than one AIM.

A Component that manages and controls the AIMs belonging to the AIW(s) being run b
at the time when they are needed. The Controller operates in the Trusted Zone.

A system for encrypting and decrypting data.
An instance of the Data Types defined by 6.1.1.
A hardware and/or software entity running at least one instance of an AIF.

The conversion of data to a format that is intelligible only if appropriate keys are known

An encryption method that uses two different keys — public key and private key — for da

An encryption method of where data encryption and decryption uses the same key.

An occurrence acted on by an Implementation.

An AIF in a proximity-based scenario.

The conversion of data of any size into a usually fixed-length string of characters for da

Operations on cryptographic keys, such as generation, exchange, and storage, to ensure

Structured and/or unstructured information made accessible to AIMs via MPAI-specifie

A sequence of Records.

An MPAI-managed dynamic collection of terms with a defined semantics.
A remote machine executing one or more AIMs.

The repository of Implementations.

A physical or logical communication interface of an AIM.

— External An input or output Port of an AIM providing communication with an external Controlle

— Remote A Port associated with a specific remote AIM.
Record Data with a specified Format.
Resource policy The set of conditions under which specific actions may be applied.

Security Abstraction
Layer

(SAL) The set of Trusted Services that provide security functionalities to AIF.

Shared Storage A Component to store data shared among AIMs. The Shared Storage is part of the Trust

Signature A specific pattern added to data, enabling cybersecurity technologies to recognise threat
Status The set of parameters characterising a Component.

Storage

—AIM A Component to store data of individual AIMs. An AIM may only access its own data.
— Secure A Component to store data securely.

Structure A composition of Records.

Time Base The protocol specifying how Components can access timing information. The Time Bas
Topology The set of Channels connecting AIMs in an AIW.

Trusted Zone An environment that contains only trusted objects, i.e., object that do not require further
User Agent The Component interfacing the user with an AIF through the Controller.

Zero Trust A cybersecurity model primarily focused on data and service protection that assumes no

5 References

5.1 Normative references
MPAI-AIF normatively references the following documents:

A

= O 0~

MPALI; Technical Specification: Governance of the MPAI Ecosystem (MPAI-GME) V2.0
GIT protocol; https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols.

ZIP format; https://pkware.cachefly.net/webdocs/casestudies/ APPNOTE.TXT.

IETF; Date and Time in the Internet: Timestamps; RFC 3339; July 2002.

IETF; Uniform Resource Identifiers (URI): Generic Syntax, RFC 2396, August 1998.
IETF; The JavaScript Object Notation (JSON) Data Interchange

Format; https://datatracker.ietf.org/doc/html/rfc8259; RFC 8259; December 2017

JSON Schema; https://json-schema.org/.

BNF Notation for syntax; https://www.w3.org/Notation.html

MPAI; The MPAI Ontology; https://mpai.community/standards/mpai-aif/mpai-ontology/

. Bormann, C. and P. Hoffman, Concise Binary Object Representation (CBOR), December

2020. https://rfc-editor.org/info/std94

https://mpai.community/standards/mpai-gme/v2-0/
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://datatracker.ietf.org/doc/html/rfc8259
https://json-schema.org/
https://www.w3.org/Notation.html
https://mpai.community/standards/mpai-aif/mpai-ontology/
https://rfc-editor.org/info/std94

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Schaad, J., CBOR Object Signing and Encryption (COSE): Structures and Process, August
2022. https://rfc-editor.org/info/std96

IETF; Entity Attestation Token (EAT), Draft. https://datatracker.ietf.org/doc/draft-ietf-rats-
eat

IEEE; 1619-2018 — IEEE Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices, January 2019. https://ieeexplore.ieee.org/serviet/opac?punumber=8637986
IETF, The MD5 Message-Digest Algorithm, April

1992. https://tools.ietf.org/html/rfc1321.html

IETF; Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve
Digital Signature Algorithm (ECDSA); RFC 6979; August

201;. https://tools.ietf.org/html/rfc6979.html

IETF; ChaCha20 and Poly1305 for IETF Protocols; RFC7539 May

2015; https://tools.ietf.org/html/rfc7539.html

IETF; Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer
Security (TLS); RFC 7919; August 2016; https://tools.ietf.org/html/rfc7919.html

IETF; PKCS #1: RSA Cryptography Specifications Version 2.2; RFC 8017; November
2016; https://tools.ietf.org/html/rfc8017.html

IETF, Edwards-Curve Digital Signature Algorithm (EdDSA); RFC8032; January

2017. https://tools.ietf.org/html/rfc8032.html

Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography, May

2009. https://www.secg.org/secl-v2.pdf

NIST, FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, August 2015 .https://doi.org/10.6028/NIST.FIPS.202

NIST, NIST Special Publication 800-38 A: Recommendation for Block Cipher Modes of
Operation: Methods and Techniques, December 2001. https://doi.org/10.6028/NIST.SP.800-
38A

NIST, NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, November

2007. https://doi.org/10.6028/NIST.SP.800-38D

5.2 Informative references

24.
25.
26.

27.
28.

29.
30.
31.
32.
33.

34.

MPALI; The MPALI Statutes; https://mpai.community/statutes/

MPAI; The MPAI Patent Policy; https://mpai.community/about/the-mpai-patent-policy/.
Framework Licence of the Artificial Intelligence Framework Technical Specification (MPAI-
AIF); https://mpai.community/standards/mpai-aif/framework-licence/

Message Passing Interface (MPI), https://www.mcs.anl.gov/research/projects/mpi/

Rose, Scott; Borchert, Oliver; Mitchell, Stu; Connelly, Sean; “Zero Trust

Architecture”; https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
MPALI; Technical Specification: Context-based Audio Enhancement (MPAI-CAE) — Use
Cases (CAE-USC) V2.4.

MPALI; Technical Specification: Multimodal Conversation (MPAI-MMC) V2.4,

MPALI; Technical Specification: Portable Avatar Format (MPAI-PAF) V1.5.

MPALI Technical Specification: Connected Autonomous Vehicle — Architecture (MPAI-
CAV) V1; https://mpai.community/standards/mpai-cav/.

MPAI Technical Specification: Compression and Understanding of Industrial Data (MPAI-
CUI) V1.1; https://mpai.community/standards/mpai-cui/.

MPAI Technical Specification: Neural Network Watermarking (MPAI-MMC)

V1; https://mpai.community/standards/mpai-nnw/.

https://rfc-editor.org/info/std96
https://datatracker.ietf.org/doc/draft-ietf-rats-eat
https://datatracker.ietf.org/doc/draft-ietf-rats-eat
https://ieeexplore.ieee.org/servlet/opac?punumber=8637986
https://tools.ietf.org/html/rfc1321.html
https://tools.ietf.org/html/rfc6979.html
https://tools.ietf.org/html/rfc7539.html
https://tools.ietf.org/html/rfc7919.html
https://tools.ietf.org/html/rfc8017.html
https://tools.ietf.org/html/rfc8032.html
https://www.secg.org/sec1-v2.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38D
https://mpai.community/about/statutes/
https://mpai.community/about/the-mpai-patent-policy/
https://mpai.community/standards/mpai-aif/framework-licence/
https://www.mcs.anl.gov/research/projects/mpi/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://mpai.community/standards/mpai-cae/
https://mpai.community/standards/mpai-cae/usc/v2-4/
https://mpai.community/standards/mpai-cae/usc/v2-4/
https://mpai.community/standards/mpai-mmc/v2-4
https://mpai.community/standards/mpai-paf/v1-5/
https://mpai.community/standards/mpai-cav/
https://mpai.community/standards/mpai-cui/
https://mpai.community/standards/mpai-nnw/

35. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi, J. Shao, and M. Reyad,
“Ratfiki: machine learning as an analytics service system,” Proceedings of the VLDB
Endowment, vol. 12, no. 2, pp. 128-140, 2018.

36. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and M. Interlandji;
PRETZEL: Opening the black box of machine learning prediction serving systems; in
13" USENIX Symposium on Operating Systems Design and Implementation (OSDI18), pp.
611-626, 2018.

37. NET [ONLINE]; https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet.

38. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and 1. Stoica; Clipper: A low-
latency online prediction serving system; in NSDI, pp. 613-627, 2017.

39. Zhao, M. Talasila, G. Jacobson, C. Borcea, S. A. Aftab, and J. F. Murray; Packaging and
sharing machine learning models via the acumos ai open platform; in 2018 17" IEEE
International Conference on Machine Learning and Applications ICMLA), pp. 841-846,
IEEE, 2018.

40. Apache Prediction I/O; https://predictionio.apache.org/.

41. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.
Crespo, D. Dennison; Hidden technical debt in Machine learning systems Share; on
NIPS’15: Proceedings of the 28" International Conference on Neural Information Processing
Systems — Volume 2; December 2015 Pages 25032511

42. Arm; “PSA Certified Crypto API 1.1,” IHI 0086, issue 2,23/03/2022, https://arm-
software.github.io/psa-api/crypto/1.1/

43. Arm; “PSA Certified Secure Storage API 1.0,” IHI 0087, issue 2, 23/03/2023, https://arm-
software.github.io/psa-api/storage/1.0/

44. Arm; “PSA Certified Attestation API 1.0,” IHI 0085, issue 3, 17/10/2022, https://arm-
software.github.io/psa-api/attestation/1.0/

6 Architecture

1 Al Framework Components 3 AlMs

1.1 Components for Basic Functionalities 3.1 Implementation types

1.2 Components for Security Functionalities3.2 Combination

2 Al Framework Implementations 3.3 Hardware-software compatibility
34 Actual implementations

6.1 Al Framework Components

This MPAI-AIF Version adds a Secure Profile with Security functionalities on top of the Basic
Profile of Version 1.1 with the following restrictions:

o There is only one AIW containing only one AIM — which may be a Composite AIM.

o The AIM implementer guarantees the security of the AIM by calling the security API.

o The AIF application developer cannot access securely the Composite AIM internals.

6.1.1 Components for Basic Functionalities
Figure 1 specifies the MPAI-AIF Components supported by MPAI-AIF Version 2.0.

https://arm-software.github.io/psa-api/crypto/1.1/
https://arm-software.github.io/psa-api/crypto/1.1/
https://arm-software.github.io/psa-api/storage/1.0/
https://arm-software.github.io/psa-api/storage/1.0/
https://arm-software.github.io/psa-api/attestation/1.0/
https://arm-software.github.io/psa-api/attestation/1.0/
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257192
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257196
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257193
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257197
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257194
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257198
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257195
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257199
https://mpai.community/standards/mpai-aif/v2-1/architecture/#_Toc148257200

N Ly Vi N -

— Module ——> z
—= Module ——>

n —_— 2 (AIM) > — am —— O

5 Al Workflow (AIW) =1

o 7 o

c =3

- Al S ——~> | ®»
AIM —> Module ——> — sl —

-~ ——= Module ——=

— (AIM
Storage (AIM) i

Controller

Global

Communication Access MPAI Store
Storage

Figure 1 — The MPAI-AIF V1 Reference Model

The specific functions of the Components are:
1. Controller:

Provides basic functionalities such as scheduling, communication between AIMs and
with AIF Components such as AIM Storage and Global Storage.

Acts as a resource manager, according to instructions given by the User through the
User Agent.

Can interact by default to all the AIMs in a given AIF.
Activates/suspends/resumes/deactivates AIWs based on User’s or other inputs.

May supports complex application scenarios by balancing load and resources.
Accesses the MPAI Store APIs to download AIWs and AIMs.

Exposes three APIs:

e AIM APIs enable AIMs to communicate with it (register themselves,
communicate and access the rest of the AIF environment). An AIW is an AIM
with additional metadata. Therefore, an AIW uses the same AIM API.

o User APIs enable User or other Controllers to perform high-level tasks (e.g.,
switch the Controller on and off, give inputs to the AIW through the
Controller).

e Controller-to-Controller API enables interactions among Controllers.

May run an AIW on different computing platforms and may run more than one AIW.
May communicate with other Controllers.

2. Communication: connects the AIF Components via Events or Channels connecting an
output Port of an AIM with an input Port of another AIM. Communication has the following
characteristics:

The Communication Component is turned on jointly with the Controller.
The Communication Component needs not be persistent.
Channels are unicast and may be physical or logical.
Messages are transmitted via Channels. They are composed of sequences of Records
and may be of two types:

o High-Priority Messages expressed as up to 16-bit integers.

e Normal-Priority Messages expressed as MPAI-AIF defined types (6.1.1).

e Messages may be communicated through Channels or Events.

4. Al Module (AIM): a data processing element with a specified Function receiving AIM-
specific inputs and producing AIM-specific outputs having the following characteristics:

Communicates with other Components through Ports or Events.

Includes at least one input Port and one output Port.

May incorporate other AIMs.

May be hot-pluggable and dynamically register and disconnect itself on the fly.

May be executed:
e Locally, e.g., it encapsulates hardware physically accessible to the Controller.
e On different computing platforms, e.g., in the cloud or on groups of drones,

and encapsulates communication with a remote Controller.

5. Al Workflow (AIW): an organised aggregation of AIMs receiving AIM-specific inputs and
producing AIM-specific outputs according to its Function implementing a Use Case that is
either proprietary or specified by an MPAI Application Standard.

R Sa RS

Global Storage: stores data shared by AIMs.

AIM Storage: stores data of individual AIMs.

User Agent: interfaces the User with an AIF through the Controller.

Access: provides access to static or slowly changing data that is required by AIMs such as

domain knowledge data, data models, etc.
10. MPALI Store: stores Implementations for users to download by secure protocols.

Note: When different Controllers running on separate computing platforms (Group Elements)
interact with one another, they cooperate by requesting one or more Controllers in range to open
Remote Ports. The Controllers on which the Remote Ports are opened can then react to
information sent by other Controllers in range through the Remote Ports and implement a
collective behaviour of choice. For instance: there is a main Controller and the other Controllers
in the Group react to the information it sends; or there is no main Controller and all Controllers
in the Group behave according to a collective logic specified in the Controllers.

6.1.2 Components for Security Functionalities

The AIF Components have the following features:
1. The AIW

The AIMs in the AIW trust each other and communicate without special security
concerns.
Communication among AIMs in the Composite AIM is non-secure.

2. The Controller

Communicates securely with the MPAI-Store and the User Agent (Authentication,
Attestation, and Encryption).
Accesses Communication, Global Storage, Access and MPAI Store via Trusted
Services API.
Is split in two parts:

e Secure Controller accesses Secure Communication and Secure Storage.

e Non-Secure Controller can access the non-secure parts of the AIF.
Interfaces with the User Agent in the area where non-secure code is executed.
Interface with the Composite AIM in the area where secure code is executed,

3. AIM/AIW Storage

Secure Storage functionality is provided through key exchange.
Non-secure functionality is provided without reference to secure API calls.

4. The AIW/AIMs call the Secure Abstraction Layer via API.
5. The AIMs of a Composite AIM shall run on the same computing platform.

Figure 2 specifies the MPAI-AIF Components operating in the secure environment created by
the Secure Abstraction Layer.

_ -
__ AR -
Module —> Module ——
—_— — (AIM — - — = 0
n {) (AlIM) — c
=R e
c AIM/AIW Storage | —=| —> —-
- EE— (non-secure) —> Module —— — | ¥
(AIM) Al L
AIM/AIW Storage — 5 Module —
(secure) — (AM) [—
Controller (Non-secure/Secure)
SAL
MPAI Communi- Global - Communication Encryption Attestation
Store cation Storage ceess Service Service Service

Figure 2 — The MPAI-AIF V2 Reference Model

6.2 Al Framework Implementations

MPAI-AIF enables a wide variety of Implementations:

1. AIF Implementations can be tailored to different execution environments, e.g., High-
Performance Computing systems or resource-constrained computing boards. For instance,
the Controller might be a process on a HPC system or a library function on a computing
board.

2. There is always a Controller even if the AIF is a lightweight Implementation.

3. The API may have different MPAI-defined Profiles to allow for Implementations:

e To run on different computing platforms and different programming languages.
e To be based on different hardware and resources available.

4. AIMs may be Implemented in hardware, software and mixed-hardware and software.

5. Interoperability between AIMs is ensured by the way communication between AIMs is
defined, irrespective of whether they are implemented in hardware or software.

6. Use of Ports and Channels ensures that compatible AIM Ports may be connected irrespective
of the AIM implementation technology.

7. Message generation and Event management is implementation independent.

6.3 Al Modules

6.3.1 Implementation types

AlIMs can be implemented in either hardware or software keeping the same interfaces
independent of the implementation technology. However, the nature of the AIM might impose
constraints on the specific values of certain API parameters and different Profiles may impose
different constraints. For instance, Events (easy to accommodate in software but less so in
hardware); and persistent Channels (easy to make in hardware, less so in software).

While software-software and hardware-hardware connections are homogeneous, a hybrid
hardware-software scenario is inherently heterogeneous and requires the specification of
additional communication protocols, which are used to wrap the hardware part and connect it to
software. A list of such protocols is provided by the MPAI Ontology [11].

Examples of supported architectures are:

o CPU-based devices running an operating system.

e Memory-mapped devices (FPGAs, GPUs, TPUs) which are presented as accelerators.

o Cloud-based frameworks.

e Naked hardware devices (i.e., IP in FPGAs) that communicate through hardware Ports.

e Encapsulated blocks of a hardware design (i.e., IP in FPGAs) that communicate through a
memory-mapped bus. In this case, the Metadata associated with the AIM (see 6.3) shall also
specify the low-level communication protocol used by the Ports.

6.3.2 Combination

MPAI-AIF supports the following ways of combining AIMs:

o Software AIMs connected to other software AIMs resulting in a software AIM.

e Non-encapsulated hardware blocks connected to other non-encapsulated hardware blocks,
resulting in a larger, non-encapsulated hardware AIM.

e Encapsulated hardware blocks connected to either other encapsulated hardware blocks or
other software blocks, resulting in a larger software AIM.

Connection between a non-encapsulated hardware AIM and a software AIM is not supported as

in such a case direct communication between the AIMs cannot be defined in any meaningful

way.

6.3.3 Hardware-software compatibility

To achieve communication among AIMs irrespective of their implementation technology, the

requirements considered in the following two cases should be satisfied:

1. Hardware AIM to Hardware AIM: Each named type in a Structure is transmitted as a
separate channel. Vector types are implemented as two channels, one transmitting the size
and the second transmitting the data.

2. All other combinations: Fill out a Structure by recursively traversing the definition (breadth-
first). Sub-fields are laid down according to their type, in little-endian order.

6.3.4 Actual implementations

6.3.4.1 Hardware

Metadata ensures that hardware blocks can be directly connected to other hardware/software
blocks, provided the specification platforms for the two blocks have compatible interfaces, i.e.,
they have compatible Ports and Channels.

6.3.4.2 Software

Software Implementations shall ensure that Communication among different constituent AIMs,

and with other AIMs outside the block, is performed correctly.

In addition, AIM software Implementations shall contain a number of well-defined steps so as to

ensure that the Controller is correctly initialised and remains in a consistent internal state, i.e.:

1. Code registering the different AIMs used by the AIW. The registration operation specifies
where the AIMs will be executed, either locally or remotely. The AIM Implementations are
archives downloaded from the Store containing source code, binary code and hardware
designs executed on a local machine/HPC cluster/MPC machine or a remote machine.

2. Code starting/stopping the AIMs.

Code registering the input/output Ports for the AIM.

4. Code instantiating unicast channels between AIM Ports belonging to AIMs used by the
AIW, and connections from/to the AIM being defined to/from remote AIMs.

5. Registering Ports and connecting them may result in a number of steps performed by the
Controller — some suitable data structure (including, for instance, data buffers) will be

(98]

allocated for each Port or Channel, in order to support the functions specified by the

Controller API called by the AIM (8.3).

Explicitly write/read data to/from, any of the existing Ports.

7. 1In general, arbitrary functionality can be added to a software AIM. For instance, depending
on the AIM Function, one would typically link libraries that allow a GPU or FPGA to be
managed through Direct Memory Access (DMA), or link and use high-level libraries (e.g.,
TensorFlow) that implement Al-related functionality.

8. The API implementation depends on the architecture the Implementation is designed for.

i

7 Metadata

Metadata specifies static properties pertaining to the interaction between:
1. A Controller and its hosting hardware.
2. An AIW and the Controller hosting it.
3. An AIW and its composing AIMs.
Metadata specified in the following Sections is represented in JSON Schema.

1 Communication channels and their data types2 AIF Metadata
1.1 Type system 3 AIW/AIM Metadata
1.2 Mapping the type to buffer contents

7.1 Communication channels and their data types
This Section specifies how Metadata pertaining to a communication Channel is defined.

7.1.1 Type system

The data interchange happening through buffers involves the exchange of structured data.
Message data types exchanged through Ports and communication Channels are defined by the
following Backus—Naur Form (BNF) specification [10]. Words in bold typeface are keywords;
capitalised words such as NAME are tokens.

fifo type :=

| /* The empty type */

| base type NAME

recursive type :=

| recursive base type NAME

base type :=| toplevel base type| recursive base type| (base type)toplevel base type :=
| array type| toplevel struct type|toplevel variant typearray type :=

| recursive base_type []

toplevel struct type :=

| { one or more fifo types struct }

one or more fifo types struct :=

| fifo_type

| fifo_type ; one or more fifo types struct

toplevel variant type :=

| { one_or more fifo types variant }

one or more_ fifo types variant :=

| fifo_type | fifo_type

| fifo_type | one_or more fifo types variant

recursive base type :=

| signed type

| unsigned_type

https://mpai.community/standards/mpai-aif/v2-1/metadata/#_Toc148257202
https://mpai.community/standards/mpai-aif/v2-1/metadata/#_Toc148257205
https://mpai.community/standards/mpai-aif/v2-1/metadata/#_Toc148257203
https://mpai.community/standards/mpai-aif/v2-1/metadata/#_Toc148257206
https://mpai.community/standards/mpai-aif/v2-1/metadata/#_Toc148257204

| float_type

| struct_type

| variant type

signed_type :=

| int8

| int16

| int32

| int64

unsigned type :=

| uint8 | byte

| uint16

| uint32

| uint64

float_type :=

| float32

| float64

struct_type :=

| { one or more recursive types struct }

one or _more_recursive types_struct :=

| recursive type

| recursive type ; one_or more_recursive types_struct
variant_type :=

| { one_or more recursive types variant }

one or more recursive types variant :=

| recursive type | recursive type

| recursive type | one or more recursive types variant

Valid types for FIFOs are those defined by the production fifo_type.
Although this syntax allows to specify types having a fixed length, the general record type
written to, or read from, the Port will not have a fixed length. If an AIM implemented in
hardware receives data from an AIM implemented in software the data format should be
harmonised with the limitations of the hardware AIM.

7.1.2 Mapping the type to buffer contents

The Type definition allows to derive an automated way of filling and transmitting buffers both
for hardware and software implementations. Data structures are turned into low-level memory
buffers, filled out by recursively traversing the definition (breadth-first). Sub-fields are laid down
according to their type, in little-endian order.

For instance, a definition for transmitting a video frame through a FIFO might be:

{int32 frameNumber; int16 x; int16 y; byte[] frame} frame t

and the corresponding memory layout would be:

[32 bits: frameNumber | 16 bits: x | 16 bits: y | 32 bits: size(frame) | 8*size(frame) bits: frame].
API functions are provided to parse the content of raw memory buffers in a platform- and
implementation-independent fashion (see Subsection 8.3.7).

7.2 AIF Metadata

AIF Metadata is specified in terms of JSON Schema [9] definition
at http://schemas.mpai.community/AIF/V2.0/AIF-metadata.schema.json

http://schemas.mpai.community/AIF/V2.0/AIF-metadata.schema.json

7.3 AIW/AIM Metadata

AIM Metadata specifies static, abstract properties pertaining to one or more AIM
implementations, and how the AIM will interact with the Controller.

AIW/AIM Metadata is specified in terms of JSON Schema [9] definition

at http://schemas.mpai.community/AIF/V2.0/AIW-AIM-metadata.schema.json

8 API Conventions

The API is written in a C-like fashion. However, the specification should be meant as a definition
for a general programming language.

Note that namespaces for modules, ports and communication channels (strings belonging to which
are indicated in the next sections with names such as module name, port name,
and channel name, respectively) are all independent.

1 API types?2 Return codes3 High-priority Messages

8.1 API types
We assume that the implementation defines several types, as follows:

message _tthe type of messages being passed through communication ports and channels
parser t the type of parsed message datatypes (a.k.a. “the high-level protocol”)

error t the type of return code defined in 7.2.2.

The actual types are opaque, and their exact definition is left to the Implementer. The only

meaningful way to operate on library types with defined results is by using library functions.
On the other hand, the type of AIM Implementations, module t, is always defined as:

typedef error _t *(module t)()

across all implementations, in order to ensure cross-compatibility.
Types such as void, size t, char, int, float are regular C types.

8.2 Return codes

Valid return codes:

Code Numeric value
MPAI _AIM_ALIVE 1
MPAI AIM _DEAD 2
MPAI_ AIF OK 0
Valid error codes:

Code Semantic value

MPAI ERROR A generic error code
MPAI ERROR MEM ALLOC Memory allocation error

The operation requested of a
module cannot be executed
since the module has not
been found

MPAI_ERROR INIT The AIW cannot be initialied

MPAI ERROR MODULE NOT FOUND

http://schemas.mpai.community/AIF/V2.0/AIW-AIM-metadata.schema.json
https://mpai.community/standards/mpai-aif/v2-1/api-conventions/#_Toc116151438
https://mpai.community/standards/mpai-aif/v2-1/api-conventions/#_Toc148257211
https://mpai.community/standards/mpai-aif/v2-1/api-conventions/#_Toc148257212

MPAI ERROR TERM

MPAI ERROR_MODULE CREATION FAILED
MPAI ERROR PORT CREATION FAILED

MPAI ERROR _CHANNEL CREATION FAILED

MPAI ERROR_WRITE

MPAI ERROR_TOO MANY PENDING MESSAGES

MPAI ERROR PORT NOT FOUND

MPAI ERROR READ

MPAI ERROR OP FAILED

MPAI_ERROR_EXTERNAL CHANNEL CREATION FAILED

8.3 High-priority Messages

The AIW cannot be properly
terminated

A new AIM cannot be
created

A new AIM Port cannot be
created

A new Channel between
AlIMs could not be created.
A generic message writing
error

A message writing operation
failed because there are too
many pending messages
waiting to be delivered
One or both ports of a
connection has (or have)
been removed

A generic message reading
error

The requested operation
failed

A new Channel between
Controllers could not be
created.

Code Numeric value
MPAI AIM_SIGNAL START 1
MPAI AIM_SIGNAL STOP 2
MPAI AIM_SIGNAL RESUME 3
MPAI AIM_SIGNAL PAUSE 4

9 Basic API

1 Store API called by Controller
1.1 Get and parse archive
2 Controller API called by User Agent

2.1 General

2.3 Inquire about state of AIWs and AIMs

2.2 Start/Pause/Resume/Stop Messages to
other AIWs
2.4 Management of Shared and AIM Storage

3 Controller API called by AIMs

for AIWs
2.5 Communication management
2.6 Resource allocation management

3.1 General
3.2 Resource allocation management
3.3 Register/deregister AIMs with the

Controller

3.4 Send Start/Pause/Resume/Stop Messages to

other AIMs

3.5 Register Connections between AIMs

3.6 Using Ports

3.7 Operations on messages
3.8 Functions specific to machine learning
3.9 Controller API called by Controller

https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257214
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257223
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257215
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257224
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257216
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257225
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257217
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257226
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257226
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257219
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257227
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257227
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257218
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257218
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257228
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257220
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257220
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257229
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257221
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257230
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257222
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257231
https://mpai.community/standards/mpai-aif/v2-1/basic-api/#_Toc148257232

9.1 Store API called by Controller

It is assumed that all the communication between the Controller and the Store occur via https
protocol. Thus, the APIs reported refer to the http secure protocol functions (i.e. GET, POST,
etc). The Store supports the GIT protocol.

The Controller implements the functions relative to the file retrieval as described in 1.1.

9.1.1 Get and parse archive
Get and parse an archive from the Store.

9.1.1.1 1.1.1 MPAI AIFS GetAndParseArchive

error t MPAI AIFS GetAndParseArchive(const char™* filename)

The default file format is tar.gz. Options are tar.gz, tar.bz2, tbz, tbz2, tb2, bz2, tar, and zip. For
example, specifying archive.zip would send an archive in ZIP format. The archive shall include
one AIW Metadata file and one or more binary files. The parsing of JSON Metadata and the
creation of the corresponding data structure is left to the Implementer.

All archives downloaded from the Store shall not leave the Trusted Zone if the AIF Profile is
Basic and shall not leave the Secure Storage if the AIF Profile is Secure.

9.2 Controller API called by User Agent

9.2.1 General

This section specifies functions executed by the User Agent when interacting with the
Controller. In particular:

1. Initialise all the Components of the AIF.

2. Start/Stop/Suspend/Resume AIWs.

3. Manage Resource Allocation.

9.2.1.1 MPAI AIFU Controller Initialize

error t MPAI AIFU Controller Initialize()
This function, called by the User Agent, switches on and initialies the Controller, in particular
the Communication Component.

9.2.1.2 MPAI AIFU Controller_Destroy

error t MPAI AIFU Controller Destroy()
This function, called by the User Agent, switches off the Controller, after data structures related
to running AIWs have been disposed of.

9.2.2 Start/Pause/Resume/Stop Messages to other AIWs

These functions can be used by the User Agent to send messages from the Controller to AIWs.
Errors encountered while transmitting/receiving these Messages are non-recoverable — i.e., they
terminate the entire AIW. AIWs can communicate with other AIWs and the Controller uses this
API to Start/Pause/Resume/Stop the AIWs.

9.2.2.1 MPAI AIFU AIW Start

error_t MPAI AIFU_AIW_Start(const char®* name, int* AIW ID)

This function, called by the User Agent, registers with the Controller and starts an instance of the
AIW named name. The AIW Metadata for name shall have been previously parsed. The AIW ID
is returned in the variable A/W _ID. If the operation succeeds, it has immediate effect.

9.2.2.2 MPAI AIFU _AIW Pause

error t MPAI AIFU AIW Pause(int AIW ID)
With this function the User Agent asks the Controller to pause the AIW with ID AIW ID. If the
operation succeeds, it has immediate effect.

9.2.2.3 MPAI AIFU AIW Resume

error t MPAI AIFU AIW_ Resume(int AIW ID)
With this function the User Agent asks the Controller to resume the AIW with ID AW _ID. If the
operation succeeds, it has immediate effect.

9.2.2.4 MPAI AIFU AIW Stop

error t MPAI AIFU AIW_ Stop(int AIW ID)
This function, called by the User Agent, deregisters and stops the AIW with ID AIW ID from the
Controller. If the operation succeeds, it has immediate effect.

9.2.3 Inquire about state of AIWs and AIMs

9.2.3.1 MPAI AIFU AIM GetStatus

error t MPAI AIFU AIM GetStatus(int AIW ID, const char* name, int* status)

With this function the User Agent inquires about the current status of the AIM

named name belonging to AIW with ID AIW ID. The status is returned in status. Admissible
values are: MPAI AIM_ALIVE, MPAI AIM DEAD.

9.2.4 Management of Shared and AIM Storage for AIWs

9.2.4.1 MPAI AIFU SharedStorage Init
error t MPAI AIFU_ SharedStorage init(int AIW ID)

With this function the User Agent initialises the Shared Storage interface for the AIW with
ID AIW ID.

9.2.4.2 MPAI AIFU_AIMStorage_Init

error_ t MPAI AIFU AlMStorage init(int AIM _ID)
With this function the User Agent initialises the AIM Storage interface for the AIW with
ID AIW _ID.

9.25 2.5 Communication management

Communication takes place with Messages communicated via Events or Ports and Channels.
Their actual implementation and signal type depends on the MPAI-AIF Implementation (and
hence on the specific platform, operating system, and programming language the Implementation
is developed for). Events are defined AIF wide while Ports, Channels and Messages are specific
to the AIM and thus part of the AIM API.

9.2.5.1 MPAI AIFU Communication_Event

error t MPAI AIFU Communication_Event(const char* event)
With this function the User Agent initialises the event handling for Event named event.

9.2.6 Resource allocation management

9.2.6.1 MPAI AIFU Resource GetGlobal

error_t MPAI AIFU Resource GetGlobal(const char* key, const char® min value, const
char* max value, const char* requested value)

With this function the User Agent interrogates the resource allocation for one AIF Metadata
entry.

9.2.6.2 MPAI AIFU Resource SetGlobal

error_ t MPAI AIFU Resource SetGlobal(const char* key, const char® min_value, const
char®* max value, const char* requested value)
With this function the User Agent initialises the resource allocation for one AIF Metadata entry.

9.2.6.3 MPAI AIFU Resource_GetAIW

error t MPAI AIFU Resource GetAIW(int AIW ID, const char* key, const

char* min_value, const char®* max_value, const char* requested value)

With this function the User Agent interrogates the resource allocation for one AIM Metadata
entry for the AIW with AIW ID AIW _ID.

9.2.6.4 MPAI AIFU Resource_SetAIW

error t MPAI AIFU Resource SetAIW(int AIW ID, const char* key, const

char* min_value, const char®* max value, const char* requested value)

With this function the User Agent interrogates the resource allocation for one AIM Metadata
entry for the AIW with AIW ID AIW ID.

9.3 Controller API called by AIMs

9.3.1 General

The following API have been defined in Version 1.1. They specify how AIWs:
1. Define the topology and connections of AIMs in the AIW.

2. Define the Time base.

3. Define the Resource Policy.

9.3.2 Resource allocation management

9.3.2.1 MPAI AIFM Resource_GetGlobal

error_t MPAI AIFM Resource GetGlobal(const char* key, const char®* min_value, const
char®* max value, const char* requested value)
With this function the AIM interrogates the resource allocation for one AIF Metadata entry.

9.3.2.2 MPAI AIFM Resource_SetGlobal

error t MPAI AIFM_Resource SetGlobal(const char® key, const char®* min_value, const char* max value, c
With this function the AIM initialises the resource allocation for one AIF Metadata entry.

9.3.2.3 MPAI AIFM Resource_GetAIW

error t MPAI AIFM_Resource GetAIW(int AIW ID, const char* key, const char® min_value, const char* m.
With this function the AIM interrogates the resource allocation for one AIM Metadata entry for
the AIW with AIW ID AIW ID.

9.3.2.4 MPAI AIFM Resource_SetAIW

error t MPAI AIFM_Resource SetAIW(int AIW ID, const char* key, const
char® min_value, const char* max_value, const char* requested value)

With this function the AIM interrogates the resource allocation for one AIM Metadata entry for
the AIW with AIW ID AIW _ID.

9.3.3 Register/deregister AIMs with the Controller

9.3.3.1 MPAI AIFM_AIM Register Local

error t MPAI AIFM_AIM Register Local(const char* name)

With this function the AIM registers the AIM named name with the Controller. The AIM shall
be defined in the AIM Metadata. An Implementation that can be run on the Controller shall have
been downloaded from the Store together with the Metadata or be available in the AIM Storage
after having been downloaded from the Store together with the Metadata.

9.3.3.2 MPAI AIFM_AIM Register_Remote

error t MPAI AIFM_AIM Register Remote(const char* name, const char* uri)

With this function the AIM registers the AIM named name with the Controller. The AIM shall
be defined in the AIM Metadata. An implementation that can be run on the Controller shall have
been downloaded from the Store together with the Metadata or be available locally. The AIM
will be run remotely on the MPAI Server identified by uri.

9.3.3.3 MPAI AIFM AIM Deregister

error t MPAI AIFM_AIM Deregister(const char®* name)
The AIW deregisters the AIM named name from the Controller.

9.3.4 Send Start/Pause/Resume/Stop Messages to other AIMs

AlIMs can send Messages to AIMs defined in its Metadata.

Errors encountered while transmitting/receiving these Messages are non-recoverable — i.e., they
terminate the entire AIM. AIMs can communicate with other AIMs and the Controller uses this
API to Start/Pause/Resume/Stop the AIMs.

9.3.4.1 MPAI AIFM_AIM Start

error t MPAI AIFM_AIM Start(const char* name)
With this function the AIM asks the Controller to start the AIM named name. If the operation
succeeds, it has immediate effect.

9.3.4.2 MPAI AIFM_AIM Pause

error_t MPAI AIFM_AIM Pause(const char™* name)
With this function the AIM asks the Controller to pause the AIM named name. If the operation
succeeds, it has immediate effect.

9.3.4.3 MPAI AIFM _AIM Resume

error t MPAI AIFM_AIM Resume(const char* name)
With this function the AIM asks the Controller to resume the AIM named name. If the operation
succeeds, it has immediate effect.

9.3.4.4 MPAI AIFM AIM Stop
error_ t MPAI AIFM_AIM _Stop(const char* name)

With this function the AIM asks the Controller to stop the AIM named name. If the operation
succeeds, it has immediate effect.

9.3.4.4.1 MPAI AIFM_AIM_ EventHandler
error t MPAI AIFM_AIM EventHandler(const char* name)

The AIF creates EventHandler for the AIW with given name name. If the operation succeeds, it
has immediate effect.

9.3.5 Register Connections between AIMs

9.3.5.1 MPAI AIFM Channel_Create

error t

MPAI AIFM_Channel Create(const char* name, const char* out AIM name, const

char* out port name, const char* in AIM name, const char* in_port name)

With this function the AIM asks the Controller to create a new interconnecting channel between
an output port and an input port. AIM and port names are specified with the name used when
constructed.

9.3.5.2 MPAI AIFM Channel_Destroy
error t MPAI AIFM_Channel Destroy(const char* name)

With this function the AIM asks the Controller to destroy the channel with name name. This API
Call closes all Ports related to the Channel.

9.3.6 Using Ports

9.3.6.1 MPAI AIFM Port Output Read

message t* MPAI AIFM_Port Output Read(

const char* AIM name, const char® port_name)

This function reads a message from the Port identified by (4/IM_name.port_name). The read is
blocking. Hence, in order to avoid deadlocks, the Implementation should first probe the Port with
MPAI AIF Port Probe. It returns a copy of the original Message.

9.3.6.2 MPAI AIFM Port Input Write

error t MPAI AIFM_Port Input Write(

const char* AIM name, const char* port name, message t* message)

This function writes a message message to the Port identified by (4IM name.port_name). The
write is blocking. Hence, in order to avoid deadlocks the Implementation should first probe the
Port with MPAI AIF Port Probe. The Message being transmitted shall remain available until
the function returns, or the behaviour will be undefined.

9.3.6.3 MPAI AIFM Port Reset

error t MPAI AIFM_Port Reset(const char®* AIM name, const char* port name)
This function resets an input or output Port identified by (4IM name.,port name) by deleting all
the pending Messages associated with it.

9.3.6.4 MPAI AIFM Port CountPendingMessages

size t MPAI _AIFM_Port CountPendingMessages(

const char* AIM name, const char* port name)

This function returns the number of pending messages on a input or output Port identified by
(AIM name.port_name).

9.3.6.5 MPAI AIFM Port_Probe

error t MPAI AIFM_Port Probe(const char* port name, message t* message)
This function returns MPAI AIF OK if either the Port is a FIFO input port and an AIM can
write to it, or the Port is a FIFO output Port and data is available to be read from it.

9.3.6.6 MPAI AIFM Port Select

int MPAI AIFM_Port Output_Select(

const char* AIM name I,const char* port name 1,...)

Given a list of output Ports, this function returns the index of one Port for which data has become
available in the meantime. The call is blocking to address potential race conditions.

9.3.7 Operations on messages

All implementations shall provide a common Message passing functionality which is abstracted
by the following functions.

9.3.7.1 MPAI AIFM Message Copy

message t* MPAI AIFM_ Message Copy(message t* message)
This function makes a copy of a Message structure message.

9.3.7.2 MPAI AIFM Message Delete

message t* MPAI AIFM_ Message Delete(message t* message)
This function deletes a Message message and its allocated memory. The format of each Message
passing through a Channel is defined by the Metadata for that Channel.

9.3.7.3 MPAI AIFM Message_GetBuffer

void* MPAI AIFM Message GetBuffer(message t* message)
This function gets access to the low-level memory buffer associated with a message
structure message.

9.3.7.4 MPAI AIFM Message GetBufferLength

size t MPAI AIFM Message GetBufferLength(message t* message)
This function gets the size in bits of the low-level memory buffer associated with a message
structure message.

9.3.7.5 MPAI AIFM Message Parse

parser_t* MPAI AIFM_ Message Parse (const char* type)

This function creates a parsed representation of the data type defined in type according to the
Metadata syntax defined in Subsection 6.1.1 Type system, to facilitate the successive parsing of
raw memory buffers associated with message structures (see functions below).

9.3.7.6 MPAI AIFM Message Parse Get StructField

void* MPAI AIFM_ Message Parse Get StructField(

parser_t* parser, void* buffer, const char* field name)

This function assumes that the low-level memory buffer buffer contains data of type struct type
whose complete parsed type definition (specified according to the metadata syntax defined in
Subsection 6.1.1 Type system) can be found in parser. This function fetches the element of the
struct_type named field name, and return it in a freshly allocated low-level memory buffer. If a
element with such name does not exist, return NULL.

9.3.7.7 MPAI AIFM Message Parse_Get VariantType

void* MPAI AIFM Message Parse Get VariantType(

parser_t* parser, void* buffer, const char* type name)

This function assumes that the low-level memory buffer buffer contains data of type variant_type
whose complete parsed type definition (specified according to the Metadata syntax defined in
Chapter 0, Type system) can be found in parser. Fetch the member of the variant_type

named field name, and return it in a freshly allocated low-level memory buffer. If a element with
such name does not exist, return NULL.

9.3.7.8 MPAI AIFM Message Parse Get ArrayLength

int MPAI AIFM_Message Parse Get ArrayLength(parser t* parser, void* buffer)

This function assumes that the low-level memory buffer buffer contains data of type array type
whose complete parsed type definition (specified according to the Metadata syntax defined in
Chapter Type system6.1.1, Type system) can be found in parser. Retrieve the length of such an
array. If the buffer does not contain an array, return -1.

9.3.7.9 MPAI AIFM Message Parse _Get ArrayField

void* MPAI AIFM_Message Parse Get ArrayField(

parser_t* parser, void* buffer, const int field num)

This function assumes that the low-level memory buffer buffer contains data of type array type
whose complete parsed type definition (specified according to the metadata syntax defined in
Subsection 6.1.1, Type system) can be found in parser. Fetch the element of the array type
named field num and return it in a freshly allocated low-level memory buffer. If such element
does not exist, return NULL.

9.3.7.10 MPAI AIFM Message Parse Delete

void MPAI AIFM Message Parse Delete(parser t* parser)
This function deletes the parsed representation of a data type defined by parser, and deallocates
all memory associated to it.

9.3.8 Functions specific to machine learning

The two key functionalities supported by the Framework are reliable update of AIMs with
Machine Learning functionality and hooks for Explainability.

9.3.8.1 Support for model update

The following API supports AIM ML model update. Such update occurs via the Store by using
the Store specific APIs or via Shared (SharedStorage) or AIM-specific (AIMStorage) storage by
using the specified APIs.

error®* MPAI AIFM_Model Update(const char* model name)

The URI model name points to the updated model. In some cases, such update needs to happen
in highly available way so as not to impact the operation of the system. How this is effected is
left to the Implementer.

9.3.8.2 Support for model drift

With this function the Controller detects possible degradation in ML operation caused by the
characteristics of input data being significantly different from those used in training.

float MPAI AIFM Model Drift(const char* name)

9.3.9 Controller API called by Controller

This Section specifies functions used by an AIM to Communicate through a Remote Port with an
AIM running on another Controller. The local and remote AIMs shall belong to the same type of
AIW.

9.3.9.1 MPAI AIFM External List

error t MPAI AIFM_External List(int* num _in range, const char** controllers metadata)
This function returns the number num_in range of in-range Controllers with which it is possible
to establish communication and running the same type of AIW, and a

vector controllers metadata containing AIW Metadata for each reachable Controller specified
according to the JSON format defined in Section 6.3. In case more than one AIW of the same
type is running on the same remote Controller, each such AIW is presented as a separate vector
element.

9.3.9.2 MPAI AIFM External_Qutput Read

message t* MPAI AIFM_External Output Read(int controlleriD, const

char* AIM name, const char* port name)

This function attempts to read a message from the External Port identified by

(controllerID, AIM name,port name). The read is blocking. Hence, to avoid deadlocks, the
Implementation should first probe the Port with MPAI AIF Port Probe. It returns a copy of the
original Message. This function attempts to establish a connection between the Controller and
the external in-range Controller identified with a previous call to

MPAI AIFM Communication List. The call might fail due to the Controller not being in range
anymore or other communication-related issues.

9.3.9.3 MPAI AIFM External Input Write

error t MPAI AIFM_External Input Write(int controllerID, const char* AIM name, const
char® port name, message t* message)

This function attempts to write a message message to the External Port identified by
(controllerID, AIM name, port name). The write is blocking. Hence, in order to avoid deadlocks
the Implementation should first probe the Port with MPAI AIF Port Probe. The Message being
transmitted shall remain available until the function returns, or the behaviour will be undefined.
This function attempts to establish a connection between the Controller and the external in-range
Controller identified with a previous call to MPAI _AIFM_Communication_List. The call might
fail due to the Controller not being in range anymore or other communication-related issues.

10 Security API

1 Data characterisation structure 5 API to access cryptographic functions.
2 API called by User Agent 5.1 Hashing.

3 API to access Secure Storage 5.2 Key management

A3PII User Agent initialises Secure Storage 5.3 Key exchange.

T.Z User Agent writes Secure Storage API 5.4 Message Authentication Code
3.3 User Agent reads Secure Storage API 5.5 Cyphers
3.4 User Agent gets info from Secure

Storage API 2.5 Cyphers
3.5 User Agent deletes a p data in Secure 5.6 Authenticated encryption with associated
Storage API data (AEAD)

4 API to access Attestation 5.7 Signature

https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257234
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257243
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257235
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257244
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257236
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257245
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257237
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257237
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257246
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257238
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257247
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257239
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257248
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257240
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257240
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257248
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257241
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257241
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257249
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257249
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257242
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257250

5.8 Asymmetric Encryption.
6 API to enable secure communication.

10.1 Data characterisation structure

These API are intended to support developers who need a secure environment. They are divided
into two parts: the first part includes APIs whose calls are executed in the non-secure area and
the second part APIs whose calls that are executed in the secure area.
Data, independently from its usage (as a key, an encrypted payload, plain text, etc.) will be
passed to/from the APIs through data_t structure.
The data_t structure shall include the following fields:
o data location_t location
the identifier of the location of the data (see data location_t below).
e void* data
the pointer (within the location specified above) to the start of the data/
e size tsize
the size of the data (in bytes).
o data flags tflags
other flags characterizing data.
The data_location_t is uint32_t type and can take one of the following symbolic values:
e DATA LOC RAM
e DATA LOC EXT FLASH
e DATA LOC INT FLASH
« DATA LOC LOCAL DISK
e DATA LOC REMOTE DISK
The data_flags tis uint32 t type and can take one of the following symbolic values:
e DATA FLAG Encrypted
e DATA FLAG plain
e DATA FLAG UNKNOWN

10.2 API called by User Agent

User Agents calls Connect to Controller API

error t MPAI AIFU Controller Initialize Secure(bool useAttestation)

This function, called by the User Agent, switches on and initialises the Controller, in particular
the Secure Communication Component.

o Start AIW
e Suspend

e Resume

o Stop

10.3 API to access Secure Storage
In the following stringname is a symbolic name of the security memory area.

10.3.1 User Agent initialises Secure Storage API

Error t MPAI AIFSS Storage Init(string t stringname, size t data_length, const p_data t data,
flags t flags flags)
Flags specify the initialisation behaviour.

10.3.2 User Agent writes Secure Storage API

Error t MPAI AIFSS Storage Write(string_t stringname, size t data length, const p_data t
data, flags t flags flags)

https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257251
https://mpai.community/standards/mpai-aif/v2-1/security-api/#_Toc148257252

Flags specify the write behaviour.

10.3.3 User Agent reads Secure Storage API

Error t MPAI AIFSS Storage Read(string_t stringname, size t data length,const p_data t
data, flags t flags flags)
Flags specify the read behaviour.

10.3.4 User Agent gets info from Secure Storage API
Error t MPAI AIFSS Storage Getinfo(string_t stringname, struct storage info t * p_info)

10.3.5 User Agent deletes a p_data in Secure Storage API

Error t MPAI AIFSS Storage Delete(string t stringname)
We assume that there is a mechanism that takes a stringname of type string and maps to a
numeric uid

10.4 API to access Attestation

Controller Trusted Service Attestation call (part of the Trusted Services API)

Error t MPAI AIFAT Get Token(uint8 t *token buf, size t token buf size,size t *token size)
Token Buffer and Token Manage are managed by the code of the API implementation.

Based on CBOR [13], COSE [14] and EAT [15] standards.

10.5 API to access cryptographic functions

10.5.1 Hashing

There are many different hashing algorithms in use today, but some of the most common ones

include:

e SHA (Secure Hash Algorithm) [24]: A family of hash functions developed by the US
National Security Agency (NSA). The most widely used members of this family are SHA-1
and SHA-256, both of which are commonly used to generate digital signatures and verify
data integrity.

e MDS5 (Message-Digest Algorithm 5) [17]: A widely used hash function that produces 128-bit
hash values. Although it is widely used, it is not considered secure and has been replaced by
more secure hash functions in many applications.

Hash_state t state object type

Implementation dependent

Error t MPAI AIFCR Hash(Hash state t * state, algorithm t alg, const uint8 t * hash, size t *

hash length, size t hash size, const uint8 t * input, size t input length)

Perform a hash operation on an input data buffer producing the resulting hash in an output

buffer. The encryption engine provides support for encryption/decryption of data of arbitrary size

by processing it either in one chunk or multiple chunks. Implementation note: encryption engine
should be efficient and release control to the rest of the system on a regular basis (e.g., at the end
of a chunk computation).

Error t MPAI AIFCR Hash verify(Hash state t * state, const uint8 t * hash, size t

hash length, const uint8 t * input, size t input length)

Perform a hash verification operation checking the hash against an input buffer.

Error t MPAI AIFCR Hash abort(Hash state t * state)

Abort operation and release internal resources.

10.5.2 5.2 Key management
Description:

e Applications access keys indirectly via an identifier

e Operations performed using a key without accessing the key material

If a key is externally provided it needs to map to the format below.

The key data is organised in a data structure that includes identifiers, the data itself, and the type
of data as indicated below. The p_data structure includes information regarding the location
where the key is stored.

10.5.2.1 MPAI AIFKM attributes t structure

Identifier (number)

e p_data (structure)

o Type:

e RAW DATA (none)
e HMAC (hash)

e« DERIVE

e PASSWORD (key derivation)

e AES

o DES

e RSA (asymmetric RSA cipher)

o« ECC

e DH (asymmetric DH key exchange).
e Lifetime

e persistence level
o volatile keys — lifetime AIF_ KEY LIFETIME VOLATILE, stored in RAM
o persistent keys — lifetime AIF KEY LIFETIME PERSISTENT, stored in primary
local storage or primary secure element.
e Policy
o set of usage flags + permitted algorithm
e permitted algorithms — restrict to a single algorithm, types: NONE or specific
algorithm
o usage flags - EXPORT, COPY, CACHE, ENCRYPT, DECRYPT,
SIGN_MESSAGE, VERIFY MESSAGE, SIGN_HASH, VERIFY_HASH,
DERIVE, VERIFY DERIVATION
Error t MPAI AIFKM import_key(const key attributes t * attributes, const uint8 t * data,
size tdata length, key id t * key)
When importing a key as a simple binary value, it is the responsibility of the programmer to fill
in the attributes data structure. The identifier inside the attributes data structure will be internally
generated as a response to the API call.
Error t MPAI AIFKM generate key(const attributes t * attributes, key id t * key)
Generate key randomly.
Error t MPAI AIFKM copy key(key id tsource key, const key attributes t * attributes,
key id t* target key)
Copy key randomly.
Error t MPAI AIFKM destroy key(key id t key)
Destroy key.
Error t MPAI AIFKM export key(key id t key, uint8 t * data, size t data_size, size t *
data_length)
Export key to output buffer.
Error t MPAI AIFKM export public key(key id tkey, uint§8 t* data, size tdata size,
size t * data_length);
Export public key to output buffer.

10.5.3 Key exchange

Algorithms: FFDH (finite-field Diffie-Hellman) [20], ECDH (elliptic curve Diffie-Hellman) [23]

Error t MPAI AIFKX raw key agreement(algorithm_t alg,key id t private key,const uint8 t

* peer key,size tpeer key length,uint8 t * output,size t output size,size t* output length)

Return the raw shared secret.

Error t MPAI AIFKX key derivation key agreement(key derivation operation t * operation,key derivati
peer key,size tpeer key length)

Key agreement and use the shared secret as input to a key derivation.

10.5.4 Message Authentication Code

The code is a cryptographic checksum on data. It uses a session key with the goal to detect any
modification of the data. It requires the data and the shared session key known to the data
originator and recipients. The cryptographic algorithms of algorithm_t are the same as defined
above.

mac_state t

Implementation dependent.

error t MPAI AIFMAC sign setup(mac_state t * state, key id t key, algorithm_t alg)

Setup MAC sign operation.

error_t MPAI AIFMAC verify setup(mac_state t * state, key id_t key, algorithm_t alg)
Setup MAC verify operation.

error_ t MPAI AIFMAC update(mac state t * state, const uint8 t * input, size t input length)
Compute MAC for a chunk of data (can be repeated several times until completion of data).
error t MPAI AIFMAC mac sign finish(mac_ state t * state, uint8 t * mac, size t mac_size,
size t * mac_length)

Finish MAC sign operation.

error t MPAI AIFMAC mac verify finish(mac_state t * state, const uint8 t * mac, size t mac_length)
Finish MAC verify operation at receiver side.

error_ t MPAI AIFMAC mac_abort(mac_state t * state)

Abort MAC operation.

10.5.5 Cyphers

MPAI-AIF V2 assumes that, in case multiblock cipher is used, the developer shall manage the
IV parameter by explicitly generating the IV, i.e.:

1. Not relying on a service doing that for them.

2. Securely communicating the IV to the parties receiving the message, and

3. Ifthe IV is not disposed of, storing the IV in the Secure Storage.

Algorithms: AIF_ ALG_XTS [16], AIF_ ALG_ECB_NO PADDING [25],
AIF_ALG_CBC_NO _PADDING [25], AIF_ALG_CBC_PKCS7 [25]

In the following API calls, the IV parameter and IV size shall be set to NULL if not needed by
the specific call. An IV shall securely generated by the API implementation in case the
encryption algorithm needs an IV and NULL is passed to the API.

cipher_state t

State object type (implementation dependent). In future version the state type may be defined.
Error t MPAI AIFCIP_Encrypt(cipher state t * state, key id t key, algorithm_t alg, uint8 t *
v, size tiv_size, size t * iv_length)

Setup symmetric encryption.

Error t MPAI AIFCIP Decrypt(cipher state t * state, key id t key, algorithm t alg, uint8 t *
1v, size tiv_size, size t * iv_length)

Setup symmetric decryption.

Error t MPAI AIFCIP_Abort(cipher_state t * state)

Abort symmetric encryption/decryption.

10.5.6 Authenticated encryption with associated data (AEAD)

Algorithms: ALG_GCM [26], ALG_CHACHA20 POLY1305 [19].

PSA ALG_GCM requires a nonce of at least 1 byte in length.

aead_state t

state object type (implementation dependent). In future version the state type may be defined.
Error t MPAI AIFAEAD Encrypt(acad_state t * state, key id t key, algorithm_t alg, const
uint8 t * nonce, size t nonce length, const uint8 t * additional data, size t
additional data length, const uint8 t * plaintext, size t plaintext length, uint8 t * ciphertext,
size t ciphertext size, size t * ciphertext length)

Error t MPAI AIFAEAD Decrypt(acad state t * state, key id t key, algorithm_t alg, const
uint8 t * nonce, size t nonce length, const uint8 t * additional data, size t
additional data length, const uint8 t * ciphertext, size t ciphertext length, uint8 t * plaintext,
size t plaintext size, size t * plaintext length)

Error t MPAI AIFEAD Abort(acad state t * state)

10.5.7 Signature

Algorithms: RSA PKCS1V15 SIGN [21], RSA PSS [21], ECDSA [18], PURE EDDSA [22].
sign_state t

State object type (implementation dependent). In future version the state type may be defined.
Error t MPAI AIFSIGN sign message(sign_state t * state, key id t key, algorithm t alg,
const uint8 t * input, size t input length, uint8 t * signature, size t signature size, size t
*signature length)

Sign a message with a private key (for hash-and-sign algorithms, this includes the hashing step).
Error t MPAI AIFSIGN verify message(sign state t * state, key id t key, algorithm t alg,
const uint8 t * input, size t input length, const uint8 t * signature, size t signature length)
Verify a signature with a public key (for hash-and-sign algorithms, this includes the hashing
step).

psa_status tpsa sign hash(psa key id tkey, psa algorithm talg, const uint8 t * hash, size t
hash_length, uint8 t * signature, size t signature size, size t * signature length)

Sign an already-calculated hash with a private key.

psa_status t psa verify hash(psa key id tkey, psa_algorithm t alg, const uint8 t * hash, size t
hash length, const uint8 t * signature,

size t signature length)

Verify the signature of a hash.

10.5.8 Asymmetric Encryption

Algorithms: RSA PKCS1V15 CRYPT [21], RSA OAEP [21].

psa_status t psa asymmetric_encrypt(psa key id tkey, psa_algorithm_ t alg, const uint8 t *
input, size t input_length, const uint8 t * salt, size t salt length, uint8 t * output, size t
output_size, size t * output length)

Encrypt a short message with a public key.

psa_status tpsa asymmetric_decrypt(psa key id tkey, psa_algorithm t alg, const uint8 t *
input, size t input_length, const uint8 t * salt, size t salt length, uint8 t * output, size t
output_size, size t * output length)

Decrypt a short message with a private key.

10.6 API to enable secure communication

An implementer should rely on the CoAP and HTTPS support provided by secure transport
libraries for the different programming languages.

11 Profiles

11.1 Basic Profile

The Basic Profile utilises:

1. Non-Secure Controller.

2. Non-Secure Storage.

3. Secure Communication enabled by secure communication libraries.
4. Basic APL

11.2 Secure Profile

Uses all the technologies in this Technical Specification.
12 Data Types

MPAI-AIF V2-1 specifies one Data Type:

Acronym Name JSON
AIF-MLM Machine Learning Model File

13 Examples

(informative)
1 AIF Implementations. 3 Examples of Metadata 3.5 Spepch Detection and
Separation
1.1 Resource-constrained3.1 Enhanced Audioconference))
: ; . 3.6 Noise Cancellation
implementation Experience
1.2 Non-resource-constrained3.2 Enhanced Audioconference)
: ; . 3.7 Synthesis Transform
implementation Experience
2 Examples of types 3.3 Analysis Transform 3.8 Audio Description

Packaging
3.4 Sound Field Description

13.1 AIF Implementations

This Chapter contains informative examples of high-level descriptions of possible AIF operations.
This Chapter will continue to be developed in subsequent Version of this Technical Specification
by adding more examples.

13.1.1 Resource-constrained implementation

1. Controller is a single process that implements the AIW and operates based on interrupts call-
backs.

2. AIF is instantiated via a secure communication interface.

3. AlIMs can be local or has been instantiated through a secure communication interface.

https://mpai.community/standards/mpai-aif/v2-1/data-types/machine-learning-model/
https://schemas.mpai.community/AIF/V2.1/data/MLModel.json
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257257
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257261
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257261
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257266
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257266
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257258
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257258
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257262
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257262
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257267
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257259
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257259
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257263
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257263
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257268
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257260
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257264
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257269
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257269
https://mpai.community/standards/mpai-aif/v2-1/examples/#_Toc148257265

Controller initialises the AIF.

AIF asks the AIMs to be instantiated.

Controller manages the Events and Messages.

User Agent can act on the AIWs at the request of the user.

Nows

13.1.2 Non-resource-constrained implementation

Controller and AIW are two independent processes.
Controller manages the Events and Messages.
AIW contacts Controller on Communication and authenticates itself.
Controller requests AIW configuration metadata.
AIW sends Controller the configuration metadata.
The implementation of the AIW can be local or can be downloaded from the MPAI Store.
Controller authenticates itself with the MPAI Store and requests implementations for the
needed AIMs listed in the metadata from the MPAI Store.
The Store sends the requested AIM implementations and the configuration metadata.
9. Controller:

1. Instantiates the AIMs specified in the AIW metadata.

2. Manages their communication and resources by sending Messages to AIMs.
10. User Agent can gain control of AIWs running on the Controller via a specific Controller API,
e.g., User Agent can test conformance of a AIW with an MPAI standard through a dedicated
API call.

NNk —

o

13.2 Examples of types

byte[] bitstream t

An array of bytes, with variable length.

{int32 frameNumber; int16 x; int16 y; byte[] frame} frame t

A struct_type with 4 members named frameNumber, X, y, and frame — they are an int32, an int16,
an int16, and an array of bytes with variable length, respectively.

{int32 132 | int64 164} variant t

A variant_type that can be either an int32 or an int64.

13.3 Examples of Metadata

This section contains the AIF, AIW and AIM Metadata of the Enhanced Audioconference
Experience (CAE-EAE) V2.1 as examples.

13.3.1 Enhanced Audioconference Experience AIF
https://schemas.mpai.community/AIF/V2.0/AIF-metadata.schema.json

13.3.2 Enhanced Audioconference Experience AIW
https://schemas.mpai.community/CAE/V2.4/AIWs/EnhancedAudioconferenceExperience.json

13.3.3 Analysis Transform AIM
https://schemas.mpai.community/CAE/V2.4/AIMs/AudioAnalysisTransform.json

13.3.4 Sound Field Description AIM
https://schemas.mpai.community/CAE/V2.4/AIMs/SoundFieldDescription.json

13.3.5 Speech Detection and Separation AIM
https://schemas.mpai.community/CAE/V2.1/AIMs/SpeechDetectionAndSeparation.json

https://schemas.mpai.community/AIF/V2.0/AIF-metadata.schema.json
https://schemas.mpai.community/CAE/V2.4/AIWs/EnhancedAudioconferenceExperience.json
https://schemas.mpai.community/CAE/V2.4/AIMs/AudioAnalysisTransform.json
https://schemas.mpai.community/CAE/V2.4/AIMs/SoundFieldDescription.json
https://schemas.mpai.community/CAE/V2.1/AIMs/SpeechDetectionAndSeparation.json

13.3.6 Noise Cancellation Module AIM
https://schemas.mpai.community/CAE/V2.4/AIMs/NoiseCancellationModule.json

13.3.7 Audio Synthesis Transform AIM
https://schemas.mpai.community/CAE/V2.4/AIMs/AudioSynthesisTransform.json

13.3.8 Audio Description Packaging AIM
https://schemas.mpai.community/CAE/V2.4/AIMs/AudioDescriptionPackaging.json

https://schemas.mpai.community/CAE/V2.4/AIMs/NoiseCancellationModule.json
https://schemas.mpai.community/CAE/V2.4/AIMs/AudioSynthesisTransform.json
https://schemas.mpai.community/CAE/V2.4/AIMs/AudioDescriptionPackaging.json

