Go To MPAI-PAF AI Modules

1     Function 2     Reference Model 3     Input/Output Data
4     SubAIMs 5     JSON Metadata 6     Profiles
7     Reference Software 8     Conformance Texting 9     Performance Assessment

1     Functions

Face Personal Status Extraction (PAF-FPE):

Receives Input Selector  Signaling whether a Face Object or Face Descriptors are provided.
Face Object From which the Personal Status should be extracted.
Face Descriptors From which the Personal Status should be extracted (Externally computed).
Produces Face Personal Status  

2     Reference Model

Figure 1 specifies the Reference Model of the Face Personal Status Extraction (PAF-FPE) AIM.

Figure 1 – Reference Architecture of the Face Personal Status Extraction (PAF-FPE) AIM

3    Input/Output Data

Table 1 specifies the Input and Output Data of the Face Personal Status Extraction (PAF-FPE) AIM.

Table 1 – I/O Data of the Face Personal Status Extraction (PAF-FPE) AIM

Input Description
Input Selector Signals whether a Face Object or its Face  Descriptors should be used to extracts Face Personal Status .
Face Visual Object Face Object from which the Personal Status should be extracted..
Face Descriptors Descriptors from which the Personal Status should be extracted..
Output Description
Face Personal Status The computed Speech Personal Status.

4     SubAIMs

A Face Personal Status Extraction (PAF-FPE) AIM instance may be implemented as a Composite AIM as specified in Figure 2.

Figure 2 – Reference Model of Face Personal Status Extraction (PAF-FPE) Composite AIM

5     JSON Metadata

https://schemas.mpai.community/PAF/V1.3/AIMs/FacePersonalStatusExtraction.json

6     Profiles

No Profiles.

7. Reference Software

8. Conformance Testing

Table 2 provides the Conformance Testing Method for PAF-FPE AIM. Conformance Testing of the individual AIMs of the PAF-FPE Composite AIM are given by the individual AIM Specification.

If a schema contains references to other schemas, conformance of data for the primary schema implies that any data referencing a secondary schema shall also validate against the relevant schema, if present and conform with the Qualifier, if present.

Table 2 – Conformance Testing Method for PAF-FPE AIM

Receives Input Selector Shall validate against Selector Schema.
Visual Object (Face) Shall validate against Face Object Schema.
Face Data shall conform with Visual Qualifier.
Face Descriptors Shall validate against Face Descriptors Schema.
Produces Face Personal Status Shall validate against Face Personal Status Schema.

Table 3 provides an example of MMC-FPE AIM conformance testing. This specification provides the methods and the datasets to test the conformance of a PAF-FPE instance without input Face Descriptors.

Table 3 – An example MMC-FPEAIM conformance testing

Input Data Data Type Input Conformance Testing Data
Face Object AVC All input Video files to be drawn from Video files.
Output Data Data Type Data Format
Emotion (Face) JSON All Emotion JSON Files shall validate against Emotion JSON Schema.

emotion_Name and emotion_SetName must be present in the output JSON file of Emotion. The value of either of the two may be null.

9. Performance Assessment

 

Go To MPAI-PAF AI Modules