Go To MPAI-MMC AI Modules

1 Function 2 Reference Model 3 Input/Output Data
4 SubAIMs 5 JSON Metadata 6 Profiles
7 Reference Software 8 Conformance Texting 9 Performance Assessment

1 Functions

Natural Language Understanding (MMC-NLU):

Receives Text Object directly input by the Entity.
Recognised Text from anAutomatic Speech Recognition AIM.
The ID of an Instance.
The Audio-Visual Scene Descriptors containing the Instance ID.
Refines Input Text if coming from an Automatic Speech Recognition AIM
Extracts Meaning (Text Descriptors) from Recognised Text or Entity’s Text Object.
Produces Refined Text.
Text Descriptors (Meaning).
Enables Personal Stats Display to produce a Portable Avatar.

2 Reference Model

Figure 1 specifies the Reference Model of the Natural Language Understanding (MMC-NLU) AIM.

Figure 1 – The Natural Language Understanding (MMC-NLU) AIM Reference Model

3 Input/Output Data

Table 1 specifies the Input and Output Data of the Natural Language Understanding (MMC-NLU) AIM.

Table 1 – I/O Data of the Natural Language Understanding (MMC-NLU) AIM

Input Description
Text Object Input Text.
Recognised Text Text from the Automatic Speech Recognition AIM.
Instance ID The Identifier of the specific Audio or Visual Object belonging to a level in the taxonomy.
Audio-Visual Scene Geometry The digital representation of the spatial arrangement of the Visual Objects of the Scene.
Visual Instance ID The Identifier of the specific Visual Object belonging to a level in the taxonomy.
Output Description
Meaning Descriptors of the Refined Text.
Refined Text The refined version of the Recognised Text from the NLU AIM.

4 SubAIMs

No SubAIMs.

5 JSON Metadata

https://schemas.mpai.community/MMC/V2.3/AIMs/NaturalLanguageUnderstanding.json

6 Profiles

The Profiles of the Natural Language Understanding (MMC-NLU) AIM are specified.

7 Reference Software

8 Conformance Testing

Table 2 provides the Conformance Testing Method for MMC-NLU AIM.

If a schema contains references to other schemas, conformance of data for the primary schema implies that any data referencing a secondary schema shall also validate against the relevant schema, if present and conform with the Qualifier, if present.

Table 2 – Conformance Testing Method for MMC-NLU AIM

Input Text Object Shall validate against Text Object schema.
Text Data shall conform with Text Qualifier.
Recognised Text Shall validate against Text Object schema.
Text Data shall conform with Text Qualifier.
Instance ID Shall validate against Instance ID schema.
Audio-Visual Scene Geometry Shall validate against AV Scene Descriptors schema.
Output Refined Text Shall validate against Text Object schema.
Text Data shall conform with Text Qualifier.
Meaning Shall validate against Meaning schema.

Table 3 provides an example of MMC-NLU AIM conformance testing.

Table 3 – An example MMC-NLU AIM conformance testing

Input Data Data Type Input Conformance Testing Data
Input Selector Binary data All Input Selectors shall conform with Selector.
Text Object Unicode All input Text files to be drawn from Text files.
Recognised Text Unicode All input Text files to be drawn from Text files.
Output Data Data Type Output Conformance Testing Criteria
Meaning JSON All JSON files shall validate against Meaning Schema
Refined Text Unicode All Text files produced shall conform with Text.

The four taggings: POS_tagging, NE_tagging, dependency_tagging, and SRL_tagging must be present in the output JSON file of Meaning. Any of the four tagging values may be null.

9 Performance Assessment

Go To MPAI-MMC AI Modules